
Celestia Shwap
Security Assessment

April 24th, 2025 — Prepared by OtterSec

James Wang james.wang@osec.io

mailto:james.wang@osec.io

Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 2

General Findings 3

OS-CSP-SUG-00 | Code Maturity 4

Appendices

Vulnerability Rating Scale 5

Procedure 6

© 2025 Otter Audits LLC. All Rights Reserved. 1 / 6

01 — Executive Summary

Overview

Celestia Labs engaged OtterSec to assess the shwapshwap program. This assessment was conducted between

March 25th and April 10th, 2025. For more information on our auditing methodology, refer to Appendix B.

Key Findings

We produced 1 finding throughout this audit engagement.

We made recommendations to emphasizing the need to adhere to coding best practices (OS-CSP-SUG-

00).

Scope

The source code was delivered to us in a Git repository at https://github.com/celestiaorg/celestia-node.

This audit was performed against 568744f.

A brief description of the programs is as follows:A brief description of the programs is as follows:

NameName DescriptionDescription

shwap
It handles serialization and organization of erasure-coded data shares

in a namespace-aware format.

© 2025 Otter Audits LLC. All Rights Reserved. 2 / 6

https://github.com/celestiaorg/celestia-node
https://github.com/celestiaorg/celestia-node/commit/568744f9fb20fed7561460eda78bc3520368fcaf

02 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-CSP-SUG-00 Suggestions regarding ensuring adherence to coding best practices.

© 2025 Otter Audits LLC. All Rights Reserved. 3 / 6

Celestia Shwap Audit 02 — General Findings

Code Maturity OS-CSP-SUG-00

Description

1. The SetTreeSetTree method is marked as test-only in celestia-appcelestia-app , but it is utilized in production
within RowNamespaceDataFromSharesRowNamespaceDataFromShares to inject a custom-configured NMT. This contradicts its

intended utilization and introduces a future maintenance risk if it is altered or removed under the

assumption that it is only for testing. To avoid accidental breakage and clarify its role, remove the

test-only comment.

>_ pkg/wrapper/nmt_wrapper.go ɢo

// SetTree sets the underlying tree to the provided tree. This is used for
// testing purposes only.
func (w *ErasuredNamespacedMerkleTree) SetTree(tree Tree) {

w.tree = tree
}

2. Ensure that NamespaceDataIDNamespaceDataID is properly documented, as it is currently missing from CIP-19CIP-19 .

Remediation

Implement the above-mentioned suggestions.

© 2025 Otter Audits LLC. All Rights Reserved. 4 / 6

A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2025 Otter Audits LLC. All Rights Reserved. 5 / 6

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2025 Otter Audits LLC. All Rights Reserved. 6 / 6

	Executive Summary
	Overview
	Key Findings
	Scope

	General Findings
	[8.75em][l]OS-CSP-SUG-00 | Code Maturity

	Appendices
	Vulnerability Rating Scale
	Procedure

