
Blobstream SP1
Security Assessment

August 20th, 2024 — Prepared by OtterSec

James Wang james.wang@osec.io

Robert Chen r@osec.io

mailto:james.wang@osec.io
mailto:r@osec.io


Table of Contents

Executive Summary 2

Overview 2

Key Findings 2

Scope 3

Findings 4

Vulnerabilities 5

OS-BSP-ADV-00 | Lack of Block Height Validation 6

General Findings 7

OS-BSP-SUG-00 | Removal of Deprecated Code 8

OS-BSP-SUG-01 | Documenting Validator Count Invariant 9

Appendices

Vulnerability Rating Scale 10

Procedure 11

© 2024 Otter Audits LLC. All Rights Reserved. 1 / 11



01 — Executive Summary

Overview

Celestia Labs and Succinct Labs engaged OtterSec to assess the sp1-blobstreamsp1-blobstream program. This

assessment was conducted between August 12th and August 14th, 2024. For more information on our

auditing methodology, refer to Appendix B.

Key Findings

We produced 3 findings throughout this audit engagement.

In particular, we identified a critical vulnerability concerning the failure to validate trusted_block_heighttrusted_block_height
and target_block_heighttarget_block_height . This issue may result in committing incorrect states in

commitHeaderRangecommitHeaderRange , thereby bricking the Blobstream contract (OS-BSP-ADV-00).

We also made recommendations for removing multiple stale errors and events for better maintainability

and clarity (OS-BSP-SUG-00), and suggested documenting Celestia’s assumption of having 256 or

fewer validators to prevent future changes in Celestia’s validator count from breaking the contract (OS-

BSP-SUG-01).

© 2024 Otter Audits LLC. All Rights Reserved. 2 / 11



02 — Scope

The source code was delivered to us in a Git repository at https://github.com/succinctlabs/sp1-blobstream.

This audit was performed against commit ed6d066 and consisted of the following modules:

1. program/src/main.rsprogram/src/main.rs

2. primitives/src/lib.rsprimitives/src/lib.rs

3. primitives/src/types.rsprimitives/src/types.rs

4. contracts/src/SP1Blobstream.solcontracts/src/SP1Blobstream.sol

A brief description of the programs is as follows:A brief description of the programs is as follows:

NameName DescriptionDescription

sp1-blobstream

The SP1Blobstream program and contracts allow Celestia to submit

zkproofs of its block data_rootdata_root onto Ethereum. The data roots

may then be utilized by other protocols relying on Celestia as the data

availability layer to perform on-chain validation of data inclusion.

© 2024 Otter Audits LLC. All Rights Reserved. 3 / 11

https://github.com/succinctlabs/sp1-blobstream
https://github.com/succinctlabs/sp1-blobstream/commit/ed6d066737e90999020c9539b22eb21bc943c6de


03 — Findings

Overall, we reported 3 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact

and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

Severity Count

CRITICALCRITICAL 1

HIGHHIGH 0

MEDIUMMEDIUM 0

LOWLOW 0

INFOINFO 2

© 2024 Otter Audits LLC. All Rights Reserved. 4 / 11



04 — Vulnerabilities

Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-

bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

IDID SeveritySeverity StatusStatus DescriptionDescription

OS-BSP-ADV-00 CRITICALCRITICAL RESOLVEDRESOLVED

The failure to validate trusted_block_heighttrusted_block_height and

target_block_heighttarget_block_height may result in committing

incorrect states in commitHeaderRangecommitHeaderRange , potentially
bricking the Blobstream contract.

© 2024 Otter Audits LLC. All Rights Reserved. 5 / 11



Blobstream SP1 Audit 04 — Vulnerabilities

Lack of Block Height Validation CRITICALCRITICAL OS-BSP-ADV-00

Description

In SP1BlobstreamSP1Blobstream , commitHeaderRangecommitHeaderRange commits new block headers and associated data commitments

to the contract state. The block heights, trusted_block_heighttrusted_block_height and target_block_heighttarget_block_height , are
crucial as they indicate the specific points in the blockchain that are being validated and committed.

>_ sp1-blobstream/program/src/main.rs rust

fn main() {
[...]
let ProofInputs {

trusted_block_height,
target_block_height,
trusted_light_block,
target_light_block,
headers,

} = proof_inputs;
[...]
let proof_outputs = ProofOutputs::abi_encode(&(

[...]
trusted_block_height,
target_block_height,
[...]

));
sp1_zkvm::io::commit_slice(&proof_outputs);

}

In the current implementation, these block heights are passed as separate parameters within the proof

input to the main function of the SP1SP1 program. However, these heights are not validated against the

actual heights of the headers contained within the trusted_light_blocktrusted_light_block and

target_light_blocktarget_light_block . This lack of validation creates a vulnerability where an attacker may manipulate
these block height values within the proof, resulting in committing an incorrect state to the contract.

Remediation

Utilize trusted_light_block.signed_header.header.height.valuetrusted_light_block.signed_header.header.height.value to fetch the

trusted_block_heighttrusted_block_height and target_light_block.signed_header.header.height.valuetarget_light_block.signed_header.header.height.value to

fetch the target_block_heighttarget_block_height instead of passing heights as separate inputs.

Patch

Resolved in e529c13.

© 2024 Otter Audits LLC. All Rights Reserved. 6 / 11

https://github.com/succinctlabs/sp1-blobstream/commit/e529c13df5c9034892d095dc8ce2ad2c32012f6f


05 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an

immediate security impact, they represent anti-patterns and may result in security issues in the future.

IDID DescriptionDescription

OS-BSP-SUG-00 Recommendation to remove deprecated events and errors.

OS-BSP-SUG-01
Suggestion to document Celestia’s assumption of having 256 or fewer validators

to prevent future changes in Celestia’s validator count from breaking the contract.

© 2024 Otter Audits LLC. All Rights Reserved. 7 / 11



Blobstream SP1 Audit 05 — General Findings

Removal of Deprecated Code OS-BSP-SUG-00

Description

In ISP1BlobstreamISP1Blobstream , the following events and errors are deprecated and may be removed to improve
readability and maintainability:

1. error LatestHeaderNotFound()error LatestHeaderNotFound()

2. error DataCommitmentNotFound()error DataCommitmentNotFound()

3. event HeaderRangeRequested([...])event HeaderRangeRequested([...])

4. event NextHeaderRequested([...])event NextHeaderRequested([...])

Remediation

Remove the events and errors mentioned above from the contract.

Patch

Resolved in e529c13.

© 2024 Otter Audits LLC. All Rights Reserved. 8 / 11

https://github.com/succinctlabs/sp1-blobstream/commit/e529c13df5c9034892d095dc8ce2ad2c32012f6f


Blobstream SP1 Audit 05 — General Findings

Documenting Validator Count Invariant OS-BSP-SUG-01

Description

In sp1-blobstream::get_validator_bitmap_commitmentsp1-blobstream::get_validator_bitmap_commitment , there is an implicit assumption about

the maximum number of validators that may exist in the Celestia blockchain. The function is designed to

handle up to 256 validators, as evidenced by the fixed-size bitmap ([bool; 256]) utilized to represent the

validator set.

>_ sp1-blobstream/program/src/main.rs rust

/// Construct a bitmap of the intersection of the validators that signed off on the trusted and
/// target header. Use the order of the validators from the trusted header. Equivocates slashing

in↪→

/// the case that validators are malicious. 256 is chosen as the maximum number of validators as
it↪→

/// is unlikely that Celestia has >256 validators.
fn get_validator_bitmap_commitment(

trusted_light_block: &LightBlock,
target_light_block: &LightBlock,

) -> U256 {

This assumption is based on the current configuration of the Celestia blockchain, where the number of

validators is around 100, well within the 256-validator limit. However, it would be beneficial to explicitly

document these additional requirements to prevent future changes to Celestia chain configurations from

breaking the contract.

Remediation

Clearly document that the sp1-blobstreamsp1-blobstream assumes a maximum of 256 validators.

Patch

Resolved in e529c13.

© 2024 Otter Audits LLC. All Rights Reserved. 9 / 11

https://github.com/succinctlabs/sp1-blobstream/commit/e529c13df5c9034892d095dc8ce2ad2c32012f6f


A— Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.

Informational findings may be found in the General Findings.

CRITICALCRITICAL Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.

Examples:

• Misconfigured authority or access control validation.

• Improperly designed economic incentives leading to loss of funds.

HIGHHIGH
Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.

Examples:

• Loss of funds requiring specific victim interactions.

• Exploitation involving high capital requirement with respect to payout.

MEDIUMMEDIUM Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion through malicious input.

• Forced exceptions in the normal user flow.

LOWLOW Low probability vulnerabilities, which are still exploitable but require extenuating circumstances

or undue risk.

Examples:

• Oracle manipulation with large capital requirements and multiple transactions.

INFOINFO Best practices to mitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.

• Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 10 / 11



B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and

implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound

in the context of an on-chain program. In other words, there is no way to steal funds or deny service,

ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal

interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash

loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle

is deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s

execution model. While this varies from chain to chain, some common implementation vulnerabilities

include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,

design vulnerabilities require a strong understanding of the underlying system and the various interactions:

both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,

we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,

picking up on details that others may have missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some

insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 11 / 11


	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	[8.75em][l]OS-BSP-ADV-00  | Lack of Block Height Validation

	General Findings
	[8.75em][l]OS-BSP-SUG-00  | Removal of Deprecated Code
	[8.75em][l]OS-BSP-SUG-01  | Documenting Validator Count Invariant

	Appendices
	Vulnerability Rating Scale
	Procedure


