
Security Audit Report

CELESTIA Q2 2025:
HANA LIBRARY

Last Revised
2025/08/04

Authors:
Ivan Gavran, Martin Hutle, Marius
Poke, Carlos Rodriguez

Celestia Q2 2025 Hana Library

Contents

Audit overview 2
The Project . 2
Scope of this Report . 2
Audit Plan . 2
Conclusions . 2

Audit Dashboard 3
Target Summary . 3
Engagement Summary . 3
Severity Summary . 3

System Overview 4
Architecture Overview . 4
Protocol Overview . 4

Threat Model and Inspection Results 7

Findings 15
Error when loading blobs not propagated . 16
Unnecessary panic upon failed verification . 17
DA Provider for Celestia Data Source mimics DA Provider for Ethereum Data Source too literally 18
Blob header not fully verified . 19
Miscellaneous code findings . 20

Appendix: Vulnerability classification 21

Disclaimer 24

Informal Systems © 2025 < Table of Contents 1

Celestia Q2 2025 Hana Library

Audit overview

The Project

In June 2025, Celestia engaged Informal Systems↗ to work on a partnership and conduct a security audit of the
following items:

● celestiaorg/hana↗, branch main, commit 0bfe515↗

Scope of this Report

Hana library is a rust component used in ZK-proving OP Stack chains through OP Succinct or Kailua. The purpose
of Hana is to serve as a library for OP Stack x Celestia chains derivation pipeline. Its crates are used to fetch the
data and verify that the data was published to Celestia and properly referenced by a Blobstream deployment.

The audit scope was:

● The hana crates↗, as well as
● The host↗ (excluding bin/host.rs)

In particular the host re-uses a lot of features from Kona. The audit was inspecting the Hana code only, assuming
the parts that are used from Kona are correct.

Audit Plan

The audit was conducted between June 5th, 2025, and June 24th, 2025 by the following personnel:

● Ivan Gavran
● Martin Hutle
● Marius Poke
● Carlos Rodriguez

Conclusions

The audit was conducted on a stable code version. The audit was performed using a property/threat-based
approach, in which the code was fully inspected analyzed along the execution paths.

The code showed a high level of quality and organization. During the audit we identified no major issues, and
reported 2 low-severity findings and 3 informational findings.

Informal Systems © 2025 < Table of Contents 2

https://informal.systems/
https://github.com/celestiaorg/hana
https://github.com/celestiaorg/hana/commit/0bfe5157a4f4c22340c25591e643d9c4986dc4ea
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host

Celestia Q2 2025 Hana Library

Audit Dashboard

Target Summary

● Type: Implementation
● Platform: Rust
● Artifacts:

– https://github.com/celestiaorg/hana/tree/main/crates↗

– https://github.com/celestiaorg/hana/tree/main/bin/host↗ (excluding bin/host.rs)

Engagement Summary

● Dates: 5.6.2025 - 24.6.2025
● Method: Manual code review

Severity Summary

Finding Severity Number

Critical 0

High 0

Medium 0

Low 2

Informational 3

Total 5

Informal Systems © 2025 < Table of Contents 3

https://github.com/celestiaorg/hana/tree/main/crates
https://github.com/celestiaorg/hana/tree/main/bin/host

Celestia Q2 2025 Hana Library

System Overview

Celestia Hana is a library that adapts the Optimism (OP) Stack’s derivation pipeline to work with Celestia as a
modular data availability (DA) layer instead of Ethereum. In Optimistic Rollups, the derivation pipeline is responsible
for reconstructing the L2 chain state from posted data. Hana interacts with and implements interfaces of the
Kona’s derive derivation library. Hana enables secure transaction data retrieval from Celestia, ensuring correctness
through cryptographic proofs that link Celestia’s DA commitments back to Ethereum via the Blobstream bridge.

Following Kona’s pipeline structure, Hana integrates DA abstractions, an asynchronous hint system for data
prefetching, and cryptographic verification of the obtained data.

Architecture Overview

Main components (under audit)

● Host: Retrieves and verifies data from Ethereum and Celestia.
● Oracle System: Coordinates data flow between client and host.
● DA Provider: Abstracts over Celestia and Ethereum for data retrieval.

External components (out of scope)

● Client (Kona-based): Drives execution of L2 blocks for state verification.
● Ethereum: Stores rollup state commitments and frame references.
● Celestia: Provides DA for transaction blobs.
● SP1 Blobstream Contract: Posts and verifies ZK proofs linking Celestia data roots to Ethereum.

Basic usage

1. A rollup state transition is challenged.
2. The Hana pipeline is instantiated with trusted boot data.
3. The pipeline retrieves transaction data using L1 pointers.
4. Verified data is executed using Kona.
5. A computed output root is compared with the claimed one to resolve the challenge.

Protocol Overview

The protocol logic is triggered during a challenge to a claimed rollup state transition. TheHana pipeline reconstructs
the L2 chain state from Celestia blobs and validates it against the claimed output root. The following diagram
describes the main steps of the protocol.

Informal Systems © 2025 < Table of Contents 4

Celestia Q2 2025 Hana Library

Figure 1: Architecture overview

Informal Systems © 2025 < Table of Contents 5

Celestia Q2 2025 Hana Library

Figure 2: Protocol overview

Informal Systems © 2025 < Table of Contents 6

Celestia Q2 2025 Hana Library

Threat Model and Inspection Results

Hana implements data fetching for data published to Celestia into the Kona derivation pipeline. Upon receiving
next block request from the derivation pipeline, Hana fetches the requested data efficiently. This combines L1
(Ethereum) and DA (Celestia) sources: when fetching the data, there is no trust given but data’s correctness is
verified by Hana. Fetching is done using client and host processes, where the client only communicates to the
host, which then communicates to external sources.

The integration with Kona is done by implementing the function next of the Kona’s DataAvailabilityProvider in-
terface inCelestiaDADataSource.next(block_ref, batcher_address) → PipelineResult<Bytes>. This function
takes a block reference as BlockInfo and an Ethereum address as parameters, and returns the fetched block.

The main property of Hana is that when a request for data arrives, it should deliver correct data back to the pipeline,
provided that the data exists. It needs to do so without placing trust into any external entity. In the following list of
properties we detail the building blocks of this main property:

Data Blobs Fetching

1. If the next data blob of block_ref is a Celestia pointer, the blob where this pointer refers to is returned. Else,
the data blob from Ethereum is returned. This disambiguation between when to fetch Celestia’s data versus
only Ethereum data is done correctly.

● A blob that is a Celestia pointer has the following structure:

Byte Description Value

0 version_byte 0x01

1 commitment_type 0x01

2 da_layer_byte 0x0c

3..10 height (u64 = 8 bytes)

11..42 commitment (Merkle hash) (32 bytes)

● The version_byte and the da_layer_byte are checked by the implementation. The commitment_type is
not checked, and all blobs that are not Celestia pointers are deferred to Etherum.

● Although the Hana library is supposed to be used in a specific context only (namely only Celestia as data
source, and only normal Ethereum blobs as fallback) the header should be completely verified and in case
of a non-fitting header an error should be raised. See Informational Finding “Blob header not fully verified”.

● Based on the information we obtained we assume that every blob (even if there are several blobs per
block_ref) is prefixed by the batcher with a correct header (starting with 0 for an Ethereum blob and 0x01
for a Celestia blob).

● Kona ensures that next() is called for the same block_ref until an EOF temporary error is thrown and then
calls clear() to reset before blobs from a new block are requested:

– Each call to next_data↗ will result in an attempt to read data calling next()↗. If there is no data to return
(self.data empty raising a Temporary error here↗, propagated in CelestiaDASource.next↗, propagate
further here↗), a Temporary error will be returned, resulting in calling self.provider.clear(), which
calls DataAvailabilityProvider’s clear↗.

Informal Systems © 2025 < Table of Contents 7

https://github.com/op-rs/kona/blob/723a78f600a1ff95dfb6a73c3b78e0eda5dc97d7/crates/protocol/derive/src/stages/l1_retrieval.rs#L83C18-L83C18
https://github.com/op-rs/kona/blob/723a78f600a1ff95dfb6a73c3b78e0eda5dc97d7/crates/protocol/derive/src/stages/l1_retrieval.rs#L95C9-L95C73
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/source.rs#L89-L91
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/source.rs#L45-L45
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/celestia.rs#L77-L77
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/celestia.rs#L91C5-L94C6

Celestia Q2 2025 Hana Library

– The result of calling CelestiaDASource’s clear will be that↗

➞ self.data↗ is emptied
➞ self.open↗ is set to false, enabling operations for the new block

2. In subsequent calls of next(), no blob is fetched twice.

● In both, the Celestia and Ethereum implementation of DataAvailabilityProvider, the flag self.open is
used to ensure that only in the first call to next() (after a clear()) the data is loaded (load_blobs() return
Ok() immediately if open is true).

● The data is obtained from sending the hint (hash of height and commitment) to the oracle.
● Then next() returns always the first element of the vector data, and removes this element. Thus no blob is
returned twice.

3. The host correctly interprets what blob was requested by the client.

Checks:

1. Correct determination of height to fetch from pointer_data.

● Height and commitment are correctly extracted from the pointer_data
● Both are passed to celestia_source.next → load_blobs → celestia_fetcher.blob_get
● Both are encoded as Hint (little-endian height, hash(commitment))

2. The correct blob is placed in the KV store.

● The hint handler correctly decodes the hint and fetches the right blob
● The blob is placed in the KV store with hash(hint)

3. The client fetches the correct block from the KV store.

● The client fetches↗ the blob using hash(hint)

Data Verification

1. The correctness of the fetched data is properly verified. That is, the implementation of checks terminates for
every input, accepts all correct data blobs, and rejects all incorrect data blobs.

Checks:

1. For every data blob, the chain of proofs establishes correctness (share proofs, storage proofs, data root
proofs). These proofs are given the parameters corresponding to the relevant block.

Conclusion: The checks are done both on the host and on the client. The client’s checks are performed
in the function blob_get (← load_blobs ← next), upon receiving the tuple (blob, blobstream_proof)
from the oracle (code ref↗). Then the following sequence of verification steps is taken:

1. verify_data_commitment: the Blobstream contract posted the commitment to the L1 state (code
ref↗)
1. the proof’s block_header’s hash matches the boot-provided l1_block_hash
2. the Blobstream contract exists at the (boot-provided) expected address
3. the data commitment exists at the expected storage slot

2. share_proof.verify: the data blob was posted on Celestia (code ref↗).
3. data_root_tuple_proof.verify: The data root (on Celestia) was included in the commitment posted

by the Blobstream contract (code ref↗).

Overall, the three verification steps create a chain of reasoning that says 1) The data was really published
on Celestia, as witnessed by the Celesetia’s header (data root); 2) That data root is among the ones
that the Blobstream contract committed to in its commitment and emitted an event about; 3) This
commitment indeed exists in L1 storage at the expected place, posted by the correct Blobstream
contract.

Informal Systems © 2025 < Table of Contents 8

https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/source.rs#L53C5-L56C6
http://self.data
http://self.open
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/oracle/src/provider.rs#L48
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/oracle/src/provider.rs#L38
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/oracle/src/provider.rs#L69-L82
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/oracle/src/provider.rs#L84-L95
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/oracle/src/provider.rs#L100-L107

Celestia Q2 2025 Hana Library

The host does the same sequence of checks, but it also retrieves all the proofs for the client and creates
a BlobstreamProof data structure (code ref↗). The BlobstreamProof consists of the following fields:

● data_root: a hash of the Celestia’s header at a given height (as received in the hint↗), obtained from
the Celestia light client (code ref↗ & ref↗).

● data_commitment, proof_nonce: determined through the find_data_commitment() function (code
ref↗); see below, for more details on the analysis of this function.

● data_root_tuple_proof: a data root tuple inclusion proof obtained from the Celestia light client (code
ref↗).

● share_proof: a share proof obtained from the Celestia light client (code ref↗). Its parameters (trans-
forming EDS based indices into ODS) were calculated correctly, as established below.

● storage_root, storage_proof, account_proof: data necessary to verify the L1 storage proofs (code
ref↗), obtained from the L1 provider, through the get_proof method (code ref↗).

● state_root, block_header: the L1 state root and block header, obtained from the L1 provider through
the get_block_by_hash method (code ref↗), with the L1 block hash set during the host configuration
to the hash of the L1 head block (code ref↗).

● blobstream_balance, blobstream_nonce, blobstream_code_hash: data necessary to construct a
TrieAccount data structure on the L1, obtained from L1 provider’s functions (code ref↗).

2. The location of the share proof is determined↗ correctly.

Conclusion: We checked the calculations↗ transforming between Original Data Square (ODS) and
Extended Data Square (EDS) based indices and they are done correctly. As we suggested in the set
of improvements in the finding “Miscellaneous code findings”, a separate function would improve the
clarity of the calculation.

3. find_data_commitment() will locate the data commitment if it exists. If it does not exist, it will raise an
error.

Conclusion: The function iterates backwards from the l1_head_block_numberparameter to 0 and checks
if there is a DataCommitmentStored event for which the parameter celestia_height is in between its
startBlock and endBlock. It is guaranteed to find such event if it exists between blocks 0 and l1_head_-
block_number. If it does not exist, it is guaranteed to terminate (because↗ start decreases, eventually
becomes 0, and the function returns at start == 0).

Finally, there is a separate question if the loop will ever reach all the way to 0, which would cause a long
outer loop (combined with an inner loop over logs).

There is a calculation inside the fetch function↗, in which it calculates safe L1 head↗ (the L1 block for
which the Celestia heights mentioned in the transactions are smaller than the height of the latest Celestia
block committed to in the blobstream). Thus calculated l1_head is then used as cfg.l1_head in the
prover, which is the source↗ of the l1_head_block_number parameter used in find_data_commitment().

Interfacing with Kona

1. Hana handles well all types of requests that may come, not only Celestia-related.

The host implements trait OnlineHostBackendCfg↗:

impl OnlineHostBackendCfg for CelestiaChainHost {
type HintType = HintWrapper;
type Providers = CelestiaChainProviders;

}

where HintType is defined as HintWrapper, an enumeration with the possible types of hint requests that
Hana’s host can handle:

Informal Systems © 2025 < Table of Contents 9

https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host/src/celestia/handler.rs#L72-L79
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host/src/celestia/handler.rs#L54-L54
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L148
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L122
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L169-L171
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L173-L175
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L158-L162
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/blobstream/src/blobstream.rs#L170
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L187-L190
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L109
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host/src/celestia/handler.rs#L75
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L125-L145
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L148C5-L162C16
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L150-L156
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L87-L97
https://github.com/succinctlabs/op-succinct/blob/46482d3f21eb435b4cffae6c80d14bf3cc1c6e19/utils/celestia/host/src/host.rs#L29C5-L35C37
https://github.com/succinctlabs/op-succinct/blob/46482d3f21eb435b4cffae6c80d14bf3cc1c6e19/utils/celestia/host/src/host.rs#L40C17-L40C98
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host/src/celestia/handler.rs#L72-L78
https://github.com/op-rs/kona/blob/9d1ace6bd9a8bfac650f3323a3f1b3c91db46135/bin/host/src/backend/online.rs#L15-L23

Celestia Q2 2025 Hana Library

pub enum HintWrapper {
Standard(HintType),
CelestiaDA,

}

where HintType is an enumeration of all possible hint types supported by Kona↗.

When the client wants to read data from the host, it first sends a hint request to the host through the hint file
descriptor, which signals a request for the host to prepare the data for reading. The host implements the
HintHandler trait↗, which handles hint requests for both values of the HintWrapper enumeration↗.

2. Hana implements correctly all Kona’s interfaces, respecting the assumptions on the behaviour of these
components, and checking its own assumptions about the inputs.

Hana’s host implements here↗ the PreImageServerStarter trait↗:

#[async_trait]
pub trait PreimageServerStarter {

async fn start_server<C>(
&self,
hint: C,
preimage: C,

) -> Result<JoinHandle<Result<(), SingleChainHostError>>,
SingleChainHostError>↪→

where
C: Channel + Send + Sync + 'static;

}

The PreimageServerStarter trait is needed to abstract the process of starting and running the preimage
server (i.e., the host process that manages data access through the hint-based system). It standardises how
a preimage server is initialised and run with communication channels for hints and preimage requests, a
backend for handling those requests (online or offline host), and a key-value storage for the preimage data↗.

Hana’s implementation is exactly the same as the one found in Kona for a single chain setup↗.

The start_server() function of PreimageServerStarter trait takes two parameters:

1. hint: C: A channel for hint communication used by the preimage server to receive hints from the
client about what data it needs. In the file-based implementation, it uses FileChannel with HintRead /
HintWrite descriptors.

2. preimage: C: A channel for preimage data communication used to receive preimage requests and send
back the requested data. In the file-based implementation, it uses FileChannel with PreimageRead /
PreimageWrite descriptors.

Hana implements here↗ the HintHandler trait↗:

/// A [HintHandler] is an interface for receiving hints, fetching remote
data, and storing it in the↪→

/// key-value store.
#[async_trait]
pub trait HintHandler {

/// The type configuration for the [HintHandler].
type Cfg: OnlineHostBackendCfg;

/// Fetches data in response to a hint.
async fn fetch_hint(

hint: Hint<<Self::Cfg as OnlineHostBackendCfg>::HintType>,

Informal Systems © 2025 < Table of Contents 10

https://github.com/op-rs/kona/blob/9d1ace6bd9a8bfac650f3323a3f1b3c91db46135/crates/proof/proof-interop/src/hint.rs#L7-L45
https://github.com/op-rs/kona/blob/9d1ace6bd9a8bfac650f3323a3f1b3c91db46135/bin/host/src/backend/online.rs#L25-L39
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host/src/celestia/handler.rs#L32-L97
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host/src/celestia/cfg.rs#L73-L117
https://github.com/succinctlabs/op-succinct/blob/8e212ed/utils/host/src/host.rs#L11-L20
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host/src/celestia/cfg.rs#L82
https://github.com/op-rs/kona/blob/9d1ace6bd9a8bfac650f3323a3f1b3c91db46135/bin/host/src/single/cfg.rs#L149-L194
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host/src/celestia/handler.rs#L22-L99
https://github.com/op-rs/kona/blob/9d1ace6bd9a8bfac650f3323a3f1b3c91db46135/bin/host/src/backend/online.rs#L25-L39

Celestia Q2 2025 Hana Library

cfg: &Self::Cfg,
providers: &<Self::Cfg as OnlineHostBackendCfg>::Providers,
kv: SharedKeyValueStore,

) -> Result<()>;
}

The HintHandler trait is necessary because it serves as an abstraction layer that receives hints from the client
about what data it needs, fetches the data from the appropriate sources and processes it into the required
format, and makes it available through the preimage store.

Hana implements CelestiaChainHintHandler specifically to handle:

● Standard L1/L2 data requests (via SingleChainHintHandler)
● Celestia-specific data requests (via CelestiaDA hint type)

The fetch_hint() function of HintHandler takes four parameters:

1. hint: Hint<Cfg::HintType>: Contains the type of hint and associated data.
2. cfg: &Cfg: Contains configuration data (type Cfg is defined as CelestiaChainHost).
3. providers: &Cfg::Providers: Provides access to different data sources (L1, L2, Celestia).
4. kv: SharedKeyValueStore: Used to store the fetched (preimage) data on the correct hash key. The

implementation handles concurrent access appropriately.

Hana’s host implements here↗ the OnlineHostBackendCfg trait↗:

/// The [OnlineHostBackendCfg] trait is used to define the type
configuration for the↪→

/// [OnlineHostBackend].
pub trait OnlineHostBackendCfg {

/// The hint type describing the range of hints that can be received.
type HintType: FromStr<Err = HintParsingError> + Hash + Eq + PartialEq +

Clone + Send + Sync;↪→

/// The providers that are used to fetch data in response to hints.
type Providers: Send + Sync;

}

The OnlineHostBackendCfg trait is needed to configure how the OnlineHostBackend operates. It defines two
associated types:

● HintType: Specifies what types of hints the host can handle (in this case HintWrapper for both standard
and Celestia hints)

● Providers: Specifies what data providers are available (in this case CelestiaChainProviders combining
L1/L2 and Celestia providers)

The host implements it for CelestiaChainHost because:

● It needs to extend standard OP Stack functionality with Celestia-specific features
● HintWrapper adds Celestia DA hint support alongside standard hints
● CelestiaChainProviders adds Celestia node access alongside standard L1/L2 providers

Hana’s implementation follows the example of the implementation found in Kona for a single chain setup↗.

Hana’s DA provider implements here↗ the DataAvailabilityProvider trait↗:

Informal Systems © 2025 < Table of Contents 11

https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host/src/celestia/cfg.rs#L237-L241
https://github.com/op-rs/kona/blob/9d1ace6bd9a8bfac650f3323a3f1b3c91db46135/bin/host/src/backend/online.rs#L15-L23
https://github.com/op-rs/kona/blob/9d1ace6bd9a8bfac650f3323a3f1b3c91db46135/bin/host/src/single/cfg.rs#L277-L280
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/celestia.rs#L48-L95
https://github.com/op-rs/kona/blob/9d1ace6bd9a8bfac650f3323a3f1b3c91db46135/crates/protocol/derive/src/traits/data_sources.rs#L26-L43

Celestia Q2 2025 Hana Library

/// Describes the functionality of a data source that can provide data
availability information.↪→

#[async_trait]
pub trait DataAvailabilityProvider {

/// The item type of the data iterator.
type Item: Send + Sync + Debug + Into<Bytes>;

/// Returns the next data for the given [BlockInfo], looking for
transactions sent by the↪→

/// `batcher_addr`. Returns a `PipelineError::Eof` if there is no more data
for the given↪→

/// block ref.
async fn next(

&mut self,
block_ref: &BlockInfo,
batcher_addr: Address,

) -> PipelineResult<Self::Item>;

/// Clears the data source for the next block ref.
fn clear(&mut self);

}

The DataAvailabilityProvider trait is needed to abstract data availability layer functionality. It serves as a
high-level interface for data availability operations, sitting above the basic CelestiaProvider trait↗ which
just handles raw blob retrieval.

The next() function of DataAvailabilityProvider trait takes two parameters:

1. block_ref: &BlockInfo: Is the reference to a pointer stored on L1 with the height of the block that has
the transaction data on Celestia and the commitment to verify the inclusion of data.

2. batcher_address: Address: Is the Ethereum address of the L1 batch submitter contract responsible for
submitting L2 batch data.

3. Hana correctly uses Kona’s functions.

1. SingleChainHintHandler::fetch_hint↗: This call processes hints of type Hint<HintType> with the
following parameters:

1. inner_hint: Constructed from the inner value of HintWrapper::Standard type, representing the
HintType↗ being processed.

2. &cfg.single_host.clone(): A reference to the cloned single_host configuration from Celesti-
aChainHost containing the agreed_l2_head_hash and agreed_l2_output_root.

3. &providers.inner_providers: A reference to the inner providers↗ from the structure of type Ce-
lestiaChainProviders↗, which supplies the necessary providers for processing the hint.

4. kv: The shared key-value store (SharedKeyValueStore) used for storing or retrieving data during hint
processing.

The result of SingleChainHintHandler::fetch_hint is matched:

● Success (Ok(_)): No further action is taken.
● Error (Err(err)): An error message is constructed and the process is aborted using anyhow::bail.

2. next() on CelestiaDADataSource’s ethereum_source↗: The next() function in EthereumDataSource pro-
cesses data based on the ecotone_timestamp configuration, taking the following parameters:

1. block_ref: Represents the reference to the L1 block from which data is retrieved. This L1 block,

Informal Systems © 2025 < Table of Contents 12

https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/traits.rs#L8-L14
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host/src/celestia/handler.rs#L39-L49
https://github.com/op-rs/kona/blob/9d1ace6bd9a8bfac650f3323a3f1b3c91db46135/crates/proof/proof-interop/src/hint.rs#L7-L45
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host/src/celestia/cfg.rs#L227-L231
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host/src/celestia/providers.rs#L7-L14
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/bin/host/src/celestia/providers.rs#L7-L14
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/celestia.rs#L63-L66

Celestia Q2 2025 Hana Library

when using Celestia as DA, is a pointer to the block on Celestia when L2 transaction data is stored.
2. batcher_address: Represents the L1 address of the batcher contract responsible for submitting the

data.

Both values are provided by Kona when executing next() of CelestiaDADataSource. The call is asyn-
chronous and the .await? call ensures that the asynchronous operation is completed before proceeding,
and it either propagates errors or extracts the successful result. If an error occurs, the function exits
early with the error; otherwise, the execution continues with the retrieved

3. clear() on CelestiaDADataSource’s ethereum_source↗: Clears the internal state of both blob and call-
data sources. This ensures that the derivation pipeline processes each block independently, avoiding
residual data interference from previous blocks. It maintains consistency by discarding stale data, frees
up memory for efficient resource usage, and re-initialises the sources to prevent errors during data
retrieval.

Host-Client Communication

1. The asynchronous communication between the host and the client ensures safe access to the data.

Checks:

1. Access to the KV store is protected for concurrent access

● The KV store is accessed only by a RWLock on the pointer to the store.

2. The client always gets the data it requested (and not some other data due to e.g., storing under the
wrong key or reordering-related problems).

● See Property 3.

3. The vector data that is used to buffer between CelestiaDASource.load_blobs and CelestiaDA-
Source.next_data ensures that there is no read from am empty vector.

● Before reading from the vector, it is checked that the vector is non-empty.

2. The asynchronous communication between the host and the client ensures communication without delays.

Checks:

1. No too long/infinite blocks on locks

● The only lock that is used in Hana is the RWLock on the KV store, which is created in CelestiaChain-
Host.create_key_value_store and used in CelestiaChainHintHandler.fetch_hint. There, the lock
is acquired before writing to the store, and immediately released after that when the associated
RwLockWriteGuard goes out of scope.

2. The key-value store used for communication between the client and the host will never get overfilled.

● There is no explicit clearing of the KV store after a blob has been fetched by hana. However, it is the
same mechanism that is used for kona, and the assumption is that Kona implements this correctly for
the intended usage of the library.

3. The vector data that is used to buffer between CelestiaDASource.load_blobs and CelestiaDA-
Source.next_data never gets overfilled.

● The vector is supposed to hold at most one element, as each celestia pointer refers only to one blob.
If next() is invoked two times concurrently, because of the open flag only the first call to load_blobs
will push an element to the vector.

3. The client and the host process are correctly started and are able to communicate with each other.

● The code creates a PreimageServerwith a OracleServer and HintReader and abackend (OnlineHostBackend
or OfflineHostBackend).

Informal Systems © 2025 < Table of Contents 13

https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/celestia.rs#L93

Celestia Q2 2025 Hana Library

● If it is a server only, a FileChannel is used to read hints and write preimages.
● In case of native mode, also a client task is started and the communication is with BidirectionalChannels.
● Note: All the referenced code is from Kona.

Non-functional Properties

1. All panics should be justified (panic only when it is an unrecoverable problem)

We believe there are instances when panics are unjustified (see the “Unnecessary panic upon failed verifica-
tion” finding)

2. All errors should be properly handled/propagated. There is one place where the error is not properly
propagated, upon loading blobs (see the “Error when loading blobs not propagated” finding). However, this
does not cause security concern.

3. No data that is coming from an external source (call parameter, chain data) or unverified internal source can
lead to excessive space allocations or excessive computation. The only relevant place in the code where an
excessive computation may be triggered is find_data_commitment()↗ function. However, its parameters are
sanitized at the op-succinct’s side, in the function calculate_safe_l1_head()↗.

Informal Systems © 2025 < Table of Contents 14

https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L21-L26
https://github.com/succinctlabs/op-succinct/blob/46482d3f21eb435b4cffae6c80d14bf3cc1c6e19/utils/celestia/host/src/host.rs#L40C17-L40C98

Celestia Q2 2025 Hana Library

Findings

Finding Type Severity Status

Error when loading blobs not
propagated

Implementation Low Resolved

Unnecessary panic upon failed
verification

Implementation Low Resolved

DA Provider for Celestia Data Source
mimics DA Provider for Ethereum
Data Source too literally

Implementation Informational Resolved

Blob header not fully verified Implementation Informational Resolved

Miscellaneous code findings Implementation Informational Resolved

Informal Systems © 2025 < Table of Contents 15

Celestia Q2 2025 Hana Library

Error when loading blobs not propagated

Severity Low Impact 1 - Low Exploitability 1 - Low

Type Implementation Status Resolved

Involved artifacts

● crates/celestia/src/source.rs↗

Description

In the function load_blobs(), upon an error↗ from self.celestia_fetcher.blob_get(), the error is not propa-
gated. This causes the calling function, CelestiaDASource’s next()↗ not to return early, but instead go into reading
next_data↗. If self.data is empty (as it should be whenever there was an error in blob_get()), a PipelineEr-
rorKind::Temporary is returned.

Problem scenarios

Such handling of errors masks other kinds of errors that may occur in the load_blobs() function.

Recommendation

At the place where an error occurs, distinguish between Temporary and other kind of errors and propagate the
error immediately.

Status

Resolved↗.

Informal Systems © 2025 < Table of Contents 16

https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/source.rs
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/source.rs#L79-L79
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/source.rs#L41C18-L41C22
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/source.rs#L43-L43
https://github.com/celestiaorg/hana/commit/87d0bac96f8b34aacfbdae7c5a45df023d905d43

Celestia Q2 2025 Hana Library

Unnecessary panic upon failed verification

Severity Low Impact 1 - Low Exploitability 1 - Low

Type Implementation Status Resolved

Involved artifacts

● hana/crates/orcle/src/provider.rs↗

● hana/crates/proofs/src/blobstream_inclusion.rs↗

Description

At a number of places when the data commitment and availability are supposed to be verified, a panic is raised
upon verification failure.

Concretely:

● data commitment verification↗ in blob_get() (client)
● data root tuple verification↗ in blob_get() (client)
● share proof verification↗ in get_blobstream_proof() (host)
● data root tuple verification↗ in get_blobstream_proof() (host)

Conversely, the verification failures at other places was handled by propagating an error:

● share proof verification↗ in blob_get() (client)
● data commitment verification↗ in get_blobstream_proof() (host)

Recommendation

To our understanding, a verification failure should be a recoverable failure, and thus an error should be returned
consistently. If the trust between the host and the client is complete, perhaps it makes sense to panic upon
verification failures on the client (because this suggests something if completely off, since the host should have
done the verification already).

Status

Resolved↗.

Informal Systems © 2025 < Table of Contents 17

https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/oracle/src/provider.rs
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/oracle/src/provider.rs#L82-L82
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/oracle/src/provider.rs#L107-L107
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L167-L167
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L181-L181
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/oracle/src/provider.rs#L84-L95
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L205-L238
https://github.com/celestiaorg/hana/commit/87d0bac96f8b34aacfbdae7c5a45df023d905d43

Celestia Q2 2025 Hana Library

DA Provider for Celestia Data Source mimics DA Provider for Ethereum Data
Source too literally

Severity Informational Impact 1 - Low Exploitability 0 - None

Type Implementation Status Resolved

Involved artifacts

● hana/crates/celestia/src/celestia.rs↗

● hana/crates/celestia/src/source.rs↗

● kona/crates/protocol/derive/src/sources/blobs.rs↗

Description

In its design, the implementation↗ of CelestiaDASource closely follows the design of BlobSource↗ and its data
source.

In particular, the implementation of DataAvailabilityProvider for BlobSource maintains a vector self.data↗

and a boolean flag self.open↗. The flag is set↗ to true whenever data is written into self.data. While the flag is
set, there can be no writing↗ into self.data. The function self.next_data() reads one after another↗ element
from self.data. When there are no more elements in self.data, it returns an error↗. Upon receiving this error,
self.clear is called↗, which resets the flag↗ self.open to false.

CelestiaDASource follows exactly the same pattern. However, in the context of Celestia, self.data will only ever
have a single element. This makes the above mechanics unnecessary:

● There is no need for a data vector, a single element would suffice.
● There is no need for a flag self.open: each write is immediately followed by a read that exhausts all of data.

Problem scenarios

According to our inspection, closely following the pattern did not result in any security issues or serious inefficiencies.
However, it creates false expectations, hindering maintainability.

Recommendation

We suggest being explicit about the expectations and implement member functions next, next_data, and clear
without following by a letter the corresponding implementations for blobs.

Status

Resolved↗.

Informal Systems © 2025 < Table of Contents 18

https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/celestia.rs
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/source.rs
https://github.com/op-rs/kona/blob/9d1ace6bd9a8bfac650f3323a3f1b3c91db46135/crates/protocol/derive/src/sources/blobs.rs
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/source.rs#L27-L27
https://github.com/op-rs/kona/blob/723a78f600a1ff95dfb6a73c3b78e0eda5dc97d7/crates/protocol/derive/src/sources/blobs.rs#L37C12-L37C22
https://github.com/op-rs/kona/blob/9d1ace6bd9a8bfac650f3323a3f1b3c91db46135/crates/protocol/derive/src/sources/blobs.rs#L30
https://github.com/op-rs/kona/blob/9d1ace6bd9a8bfac650f3323a3f1b3c91db46135/crates/protocol/derive/src/sources/blobs.rs#L32
https://github.com/op-rs/kona/blob/723a78f600a1ff95dfb6a73c3b78e0eda5dc97d7/crates/protocol/derive/src/sources/blobs.rs#L162C9-L162C26
https://github.com/op-rs/kona/blob/723a78f600a1ff95dfb6a73c3b78e0eda5dc97d7/crates/protocol/derive/src/sources/blobs.rs#L123C9-L125C10
https://github.com/op-rs/kona/blob/723a78f600a1ff95dfb6a73c3b78e0eda5dc97d7/crates/protocol/derive/src/sources/blobs.rs#L173C9-L173C32
https://github.com/op-rs/kona/blob/723a78f600a1ff95dfb6a73c3b78e0eda5dc97d7/crates/protocol/derive/src/sources/blobs.rs#L169C9-L171C10
https://github.com/op-rs/kona/blob/723a78f600a1ff95dfb6a73c3b78e0eda5dc97d7/crates/protocol/derive/src/stages/l1_retrieval.rs#L98C17-L101C18
https://github.com/op-rs/kona/blob/723a78f600a1ff95dfb6a73c3b78e0eda5dc97d7/crates/protocol/derive/src/sources/blobs.rs#L211C5-L214C6
https://github.com/celestiaorg/hana/commit/87d0bac96f8b34aacfbdae7c5a45df023d905d43

Celestia Q2 2025 Hana Library

Blob header not fully verified

Severity Informational Impact: Exploitability:

Type Implementation Status Resolved

Involved artifacts

● crates/celestia/src/celestia.rs↗, function next()↗

Description

According to the OP stack specification, the first 1-3 bytes of a blob identify the type of blob.

version_byte commitment_type da_layer_byte payload

0 frames

1 0 keccak_commitment

1 1 0 eigenda_commitment

1 1 0x0a avail_commitment

1 1 0x0c celestia_commitment

1 1 . . . altda_commitment

The current implementation of Hana only checks the first and third byte, forwarding everything else to the Ethereum
data provider. While this is ok under the assumption that the Hana library is used only in scenarios where blobs
are either Celestia pointers or Ethereum blobs as fallback, for the propose of robustness the header should be
completely checked and an error raised in case of unsupported blobs.

Problem scenarios

● Unindented usage of the library
● Later code changes

Recommendation

● Check for 0x01 0x01 0x0c for a Celestia pointer, else check for 0x00 for a standard blob, else return an error.

Status

Resolved↗.

Informal Systems © 2025 < Table of Contents 19

https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/celestia.rs
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/celestia/src/celestia.rs#L57-L89
https://github.com/celestiaorg/hana/commit/87d0bac96f8b34aacfbdae7c5a45df023d905d43

Celestia Q2 2025 Hana Library

Miscellaneous code findings

Severity Informational Impact 1 - Low Exploitability 0 - None

Type Implementation Status Resolved

In this finding, we describe a number of improvements to the code. Those typically do not affect the functionality
or security, but improve the code readability, make code more robust with respect to future changes, or represent
a good engineering practice.

1. The code part↗ in which start_index and end_index for obtaining the share proof are calculated should be
factored out into a separate function. Since the calculation is not straightforward to understand, this will help
clarity and maintainability.

2. Instead of repeated unwraps of blob.index here↗, better unwrap once with explicit error handling.
3. The state_root field in BlobstreamProof is never used as it’s retrieved directly from the L1 block header

(code ref↗).
4. The function find_data_commitment() relies on the fact that l1_head_block_number parameter will be such

that there would be an earlier block that contains the celestia_height among its DataCommitmentStored
logs. (In the overall system this is made sure by the op-succinct’s function calculate_safe_l1_head()↗.
However, it would be useful if this assumption would be explicitly mentioned for the function (in case it gets
used in a different context).

5. Typo blostream_address↗ instead of blobstream_address.

Status

Resolved↗.

Informal Systems © 2025 < Table of Contents 20

https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L148C5-L162C16
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/proofs/src/blobstream_inclusion.rs#L155-L155
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/blobstream/src/blobstream.rs#L200
https://github.com/succinctlabs/op-succinct/blob/46482d3f21eb435b4cffae6c80d14bf3cc1c6e19/utils/celestia/host/src/host.rs#L40C17-L40C98
https://github.com/celestiaorg/hana/blob/0bfe5157a4f4c22340c25591e643d9c4986dc4ea/crates/blobstream/src/blobstream.rs#L247
https://github.com/celestiaorg/hana/commit/87d0bac96f8b34aacfbdae7c5a45df023d905d43

Celestia Q2 2025 Hana Library

Appendix: Vulnerability classifica-
tion

For classifying vulnerabilities identified in the findings of this report, we employ the simplified version of Common
Vulnerability Scoring System (CVSS) v3.1↗, which is an industry standard vulnerability metric. For each identified
vulnerability we assess the scores from the Base Metric Group, the Impact score↗, and the Exploitability score↗.
The Exploitability score reflects the ease and technical means by which the vulnerability can be exploited. That is,
it represents characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
The Impact score reflects the direct consequence of a successful exploit, and represents the consequence to
the thing that suffers the impact, which we refer to formally as the impacted component. In order to ease score
understanding, we employ CVSS Qualitative Severity Rating Scale↗, and abstract numerical scores into the textual
representation; we construct the final Severity score based on the combination of the Impact and Exploitability
sub-scores.

As blockchains are a fast evolving field, we evaluate the scores not only for the present state of the system, but
also for the state that deems achievable within 1 year of projected system evolution. E.g., if at present the system
interacts with 1-2 other blockchains, but plans to expand interaction to 10-20 within the next year, we evaluate
the impact, exploitability, and severity scores wrt. the latter state, in order to give the system designers better
understanding of the vulnerabilities that need to be addressed in the near future.

Impact Score

The Impact score captures the effects of a successfully exploited vulnerability on the component that suffers the
worst outcome that is most directly and predictably associated with the attack.

ImpactScore Examples

High Halting of the chain; loss, locking, or unauthorized
withdrawal of funds of many users; arbitrary
transaction execution; forging of user messages /
circumvention of authorization logic

Medium Temporary denial of service / substantial unexpected
delays in processing user requests (e.g. many
hours/days); loss, locking, or unauthorized withdrawal
of funds of a single user / few users; failures during
transaction execution (e.g. out of gas errors); substantial
increase in node computational requirements (e.g. 10x)

Low Transient unexpected delays in processing user
requests (e.g. minutes/a few hours); Medium increase
in node computational requirements (e.g. 2x); any kind
of problem that affects end users, but can be repaired
by manual intervention (e.g. a special transaction)

Informal Systems © 2025 < Table of Contents 21

https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/specification-document#2-3-Impact-Metrics
https://www.first.org/cvss/specification-document#2-1-Exploitability-Metrics
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale

Celestia Q2 2025 Hana Library

ImpactScore Examples

None Small increase in node computational requirements
(e.g. 20%); code inefficiencies; bad code practices;
lack/incompleteness of tests; lack/incompleteness of
documentation

Exploitability Score

The Exploitability score reflects the ease and technical means by which the vulnerability can be exploited; it
represents the characteristics of the vulnerable component. In the below table we list, for each category, examples
of actions by actors that are enough to trigger the exploit. In the examples below:

● Actors can be any entity that interacts with the system: other blockchains, system users, validators, relayers, but
also uncontrollable phenomena (e.g. network delays or partitions).

● Actions can be

– legitimate, e.g. submission of a transaction that follows protocol rules by a user; delegation/redelega-
tion/bonding/unbonding; validator downtime; validator voting on a single, but alternative block; delays in
relaying certain messages, or speeding up relaying other messages;

– illegitimate, e.g. submission of a specially crafted transaction (not following the protocol, or e.g. with large/in-
correct values); voting on two different alternative blocks; alteration of relayed messages.

● We employ also a qualitative measure representing the amount of certain class of power (e.g. possessed tokens,
validator power, relayed messages): small for < 3%;medium for 3-10%; large for 10-33%, all for >33%. We further
quantify this qualitative measure as relative to the largest of the system components. (e.g. when two blockchains
are interacting, one with a large capitalization, and another with a small capitalization, we employ small wrt. the
number of tokens held, if it is small wrt. the large blockchain, even if it is large wrt. the small blockchain)

ExploitabilityScore Examples

High illegitimate actions taken by a small group of actors;
possibly coordinated with legitimate actions taken by a
medium group of actors

Medium illegitimate actions taken by a medium group of actors;
possibly coordinated with legitimate actions taken by a
large group of actors

Low illegitimate actions taken by a large group of actors;
possibly coordinated with legitimate actions taken by
all actors

None illegitimate actions taken in a coordinated fashion by all
actors

Severity Score

The severity score combines the above two sub-scores into a single value, and roughly represents the probability
of the system suffering a severe impact with time; thus it also represents the measure of the urgency or order
in which vulnerabilities need to be addressed. We assess the severity according to the combination scheme
represented graphically below.

Informal Systems © 2025 < Table of Contents 22

Celestia Q2 2025 Hana Library

Figure 3: Severity classification

As can be seen from the image above, only a combination of high impact with high exploitability results in a Critical
severity score; such vulnerabilities need to be addressed ASAP. Accordingly, High severity score receive vulnera-
bilities with the combination of high impact and medium exploitability, or medium impact, but high exploitability.

SeverityScore Examples

Critical Halting of chain via a submission of a specially crafted
transaction

High Permanent loss of user funds via a combination of
submitting a specially crafted transaction with delaying
of certain messages by a large portion of relayers

Medium Substantial unexpected delays in processing user
requests via a combination of delaying of certain
messages by a large group of relayers with coordinated
withdrawal of funds by a large group of users

Low 2x increase in node computational requirements via
coordinated withdrawal of all user tokens

Informational Code inefficiencies; bad code practices;
lack/incompleteness of tests; lack/incompleteness of
documentation; any exploit for which a coordinated
illegitimate action of all actors is necessary

Informal Systems © 2025 < Table of Contents 23

Celestia Q2 2025 Hana Library

Disclaimer

This report is subject to the terms and conditions (includingwithout limitation, description of services, confidentiality,
disclaimer and limitation of liability, etc.) set forth in the associated Services Agreement. This report provided in
connection with the Services set forth in the Services Agreement shall be used by the Company only to the extent
permitted under the terms and conditions set forth in the Agreement.

This audit report is provided on an “as is” basis, with no guarantee of the completeness, accuracy, timeliness or of
the results obtained by use of the information provided. Informal has relied upon information and data provided by
the client, and is not responsible for any errors or omissions in such information and data or results obtained from
the use of that information or conclusions in this report. Informal makes no warranty of any kind, express or implied,
regarding the accuracy, adequacy, validity, reliability, availability or completeness of this report. This report should
not be considered or utilized as a complete assessment of the overall utility, security or bugfree status of the code.

This audit report contains confidential information and is only intended for use by the client. Reuse or republication
of the audit report other than as authorized by the client is prohibited.

This report is not, nor should it be considered, an “endorsement”, “approval” or “disapproval” of any particular project
or team. This report is not, nor should it be considered, an indication of the economics or value of any “product” or
“asset” created by any team or project that contracts with Informal to perform a security assessment. This report
does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor does it provide any indication of the client’s business, business model or legal compliance. This report should
not be used in any way to make decisions around investment or involvement with any particular project. This
report in no way provides investment advice, nor should it be leveraged as investment advice of any sort.

Blockchain technology and cryptographic assets in general and by definition present a high level of ongoing risk.
Client is responsible for its own due diligence and continuing security in this regard.

Informal Systems © 2025 < Table of Contents 24

	Audit overview
	The Project
	Scope of this Report
	Audit Plan
	Conclusions

	Audit Dashboard
	Target Summary
	Engagement Summary
	Severity Summary

	System Overview
	Architecture Overview
	Protocol Overview

	Threat Model and Inspection Results
	Findings
	Error when loading blobs not propagated
	Unnecessary panic upon failed verification
	DA Provider for Celestia Data Source mimics DA Provider for Ethereum Data Source too literally
	Blob header not fully verified
	Miscellaneous code findings

	Appendix: Vulnerability classification
	Disclaimer

