
Audit
Celestia

Presented by:

OtterSec contact@osec.io

James james.wang@osec.io

Robert Chen r@osec.io

mailto:contact@osec.io
mailto:james.wang@osec.io
mailto:r@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-OPS-ADV-00 [med] | Inability To Timeout Connections . 6

05 General Findings 7
OS-OPS-SUG-00 | Handling Get Failures . 8
OS-OPS-SUG-01 | Centralized Configuration Handling . 9

Appendices

A Vulnerability Rating Scale 10

B Procedure 11

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 11

01 | Executive Summary

Overview
Celestia engaged OtterSec to assess the op-stack program. This assessment was conducted between
December 1st and December 12th, 2023. For more information on our auditing methodology, refer to
Appendix B.

Key Findings
We produced 3 findings throughout this audit engagement.

In particular, we discovered a medium-risk vulnerability regarding the absence of a connection timeout in
the Celestia remote procedure call client, which may hang Optimism indefinitely (OS-OPS-ADV-00).

We also made recommendations around Optimism’s state derivation process, which lacks a fallback
mechanismwhile retrieving data from Celestia (OS-OPS-SUG-00). Additionally, we advised specific opti-
mizations for the configuration handling process by moving Celestia remote procedure call configuration
fetching into unified configuration parsing files and removing default values (OS-OPS-SUG-01).

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 11

02 | Scope
Thesourcecodewasdelivered tous inagit repositoryatgithub.com/celestiaorg/optimism/commits/celestia-
develop. This audit was performed against commits between 6ce4e61 and f88e4a2.

A brief description of the programs is as follows:

Name Description

op-stack Celestia integration within the OP Stack allows users to settle data on the less costly
Celestia chain instead of the original L1.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 11

https://github.com/celestiaorg/optimism/commits/celestia-develop
https://github.com/celestiaorg/optimism/commits/celestia-develop
https://github.com/ethereum-optimism/optimism/commit/6ce4e61713b6d588f23f06c08af874f78c13a570
 https://github.com/celestiaorg/optimism/commit/f88e4a2ee864939f63976f051013c2d348af48d4

03 | Findings
Overall, we reported 3 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but
will aid in mitigating future vulnerabilities.

Severity Count

Critical 0
High 0

Medium 1
Low 0

Informational 2

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 11

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-OPS-ADV-00 Medium Resolved The absence of a connection timeout in the Celestia remote
procedure call client may hang Optimism indefinitely.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 11

Celestia Audit 04 | Vulnerabilities

OS-OPS-ADV-00 [med]| Inability To Timeout Connections

Description

The current remote procedure call client (DAClient) used to connect to the Celestia network, lacks a
timeout configuration during establishing the connection. This omissionmay result in liveliness issues
within the Optimism L2 chain if Celestia’s RPC servers accept connections but fail to respond to calls.

op-node/rollup/da_client.go RUST

type DAClient struct {
Client *proxy.Client

}

func NewDAClient(rpc string) (*DAClient, error) {
client := proxy.NewClient()
err := client.Start(rpc,

grpc.WithTransportCredentials(insecure.NewCredentials()))↪→

if err != nil {
return nil, err

}
return &DAClient{

Client: client,
}, nil

}

Withinda_client, theNewDAClient function utilizesclient.Start to initiate a connection to the
Celestia remote procedure call server. However, the absence of a timeout configuration in this process
may result in a blocking scenario, particularly when posting transactions to Celestia for storage. If the
server is experiencing problems. indefinite blockagemay occur, forcing the entire system to rely on the
DAClient to hang indefinitely while awaiting the response to the remote procedure call. This, in turn,
may impact the liveliness of the Optimism system.

Remediation

Add a timeout mechanism for Celestia gRPC to properly fall back to Layer 1 Ethereum if Celestia is unre-
sponsive or encounters issues.

Patch

Resolved in 9f21d29.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 11

https://github.com/celestiaorg/optimism/commit/9f21d29c940722b6c293d4ea9ebf727cb41df91e

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns andmay result in security issues in the future.

ID Description

OS-OPS-SUG-00 Optimism’s state derivation process lacks graceful fallback mechanisms for retriev-
ing data from Celestia.

OS-OPS-SUG-01 The configuration handling process may be optimized.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 11

Celestia Audit 05 | General Findings

OS-OPS-SUG-00 | Handling Get Failures

Description

There is a potential limitation in Optimism’s system when interacting with Celestia for data retrieval.
Optimism interacts with Celestia in two scenarios:

1. Posting Data for Storage: This involves sending data to Celestia for storage.

2. Getting Data for State Derivation: This involves retrieving data from Celestia to derive the state.

op-node/rollup/derive/l1_retrieval.go RUST

// NextData does an action in the L1 Retrieval stage
// If there is data, it pushes it to the next stage.
// If there is no more data open ourselves if we are closed or close ourselves if

we are open↪→

func (l1r *L1Retrieval) NextData(ctx context.Context) ([]byte, error) {
[...]
data, err := l1r.datas.Next(ctx)
if err == io.EOF {

l1r.datas = nil
return nil, io.EOF

} else if err != nil {
// CalldataSource appropriately wraps the error so avoid double

wrapping errors here.↪→

return nil, err
} else {

return data, nil
}

}

While failures in posting data can be managed gracefully by switching to Ethereum Layer 1 when Celestia
encounters issues, the situation becomes more critical when it comes to retrieving data from Celestia.
Currently, there is no mechanism in place to handle this scenario gracefully.

The inability to retrieve data from Celestia for state derivation means that the derivation process may
become impossible during Celestia’s remote procedure call failures. This limitationweakens theOptimism
invariant where Layer 2 must always be derivable from Etheruem Layer 1, introducing a potential point of
failure in the derivation process.

Remediation

While this limitation is inevitable for solutions that settle data outside of the Ethereum chain, we believe
it should be documented and made clear to developers for future consideration in system design and
operation.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 11

Celestia Audit 05 | General Findings

OS-OPS-SUG-01 | Centralized Configuration Handling

Description

Rather than retrieving the Celestia remote procedure call configuration on demand, as currently imple-
mented, it may be more beneficial to pre-fetch the configuration within the unified configuration parsing
files. Collecting configuration fetching and parsing may increase the maintainability and readability of
the code.

op-batcher/batcher/driver.go RUST

func (l *BatchSubmitter) Start() error {
[...]
daRpc := os.Getenv("OP_BATCHER_DA_RPC")
if daRpc == "" {

daRpc = "localhost:26650"
}
daClient, err := rollup.NewDAClient(daRpc)
if err != nil {

return err
}
[...]

}

Additionally, rather than falling back to default values when certain configurations are missing, an error
should be thrown, serving as an assertive mechanism to remind users to set the configuration parameters.
This ensures that critical settings are explicitly provided and prevents the program from running with
potentially incorrect values.

Remediation

Move the Celestia remote procedure call configuration fetching process into the unified configuration
parsing files and ensure the program panics if users fail to set the config parameters.

Patch

The suggestions are partially adopted in f1b4c28. After consideration, the Celestia team decided to retain
a default daRpc value for integration ease.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 11

https://github.com/celestiaorg/optimism/commit/f1b4c288b556f9081ab69573459c3e3b0456aaf8

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings may be found in the General Findings section.

Critical Vulnerabilities that immediately result in a loss of user funds with minimal precondi-
tions.

Examples:

• Misconfigured authority or access control validation.
• Improperly designed economic incentives leading to loss of funds.

High Vulnerabilities that may result in a loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions.
• Exploitation involving high capital requirement with respect to payout.

Medium Vulnerabilities that may result in denial of service scenarios or degraded usability.

Examples:

• Computational limit exhaustion throughmalicious input.
• Forced exceptions in the normal user flow.

Low Low probability vulnerabilities, which are still exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions.

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants.
• Improved input validation.

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 11

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the program’s implementation requires a deep understanding of the chain’s
executionmodel. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to bemore “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 11

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-OPS-ADV-00 [med] | Inability To Timeout Connections

	General Findings
	OS-OPS-SUG-00 | Handling Get Failures
	OS-OPS-SUG-01 | Centralized Configuration Handling

	Appendices
	Vulnerability Rating Scale
	Procedure

