
Prepared for
Eugenia Acosta
Celestia

Prepared by
Malte Leip
Mohit Sharma
Zellic

March 4, 2024

Blobstream X
Zero Knowledge Security Assessment

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 5

2. Introduction 6

2.1. About Blobstream X 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Data hash in return value of prove_next_header_data_commitment undercon-
strained 11

3.2. End block’s header hash is unconstrained for a subchain proof 13

3.3. Inputs to prove_subchain are unconstrained 15

3.4. End block header is never checked if end block is too far 17

3.5. Tendermint XTendermintSkipCircuit skip function’s return valueneednot be re-
lated to parameters 19

3.6. Enabled leaves in get_data_commitment can underflow 22

3.7. Discrepancy in length of header chain and data commitment 24

Zellic © 2024 ← Back to Contents Page 2 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

3.8. Tendermint X TendermintVerify verify_skip_distance function contains inef-
fective inequality checks 26

4. Discussion 28

4.1. Dependency on soundness of Tendermint X circuits 29

4.2. Confusing variable names 29

5. Assessment Results 29

5.1. Disclaimer 30

Zellic © 2024 ← Back to Contents Page 3 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana, as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional infosec
and competitive hacking has enabled us to consistently discover hidden vulnerabilities and develop
novel security research, earning us the reputation as the go-to security firm for teamswhose rate of
innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 30

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Celestia from February 29th toMarch 4th, 2024. During
thisengagement, Zellic reviewedBlobstreamX’scode for security vulnerabilities, design issues, and
general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Assuming soundness of the Tendermint X circuits, do the CombinedSkipCircuit and
CombinedStepCircuit circuitsproveauthenticity of thedatacommitmentsbasedon their
trusted inputs as the sole root of trust?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• On-chain contracts interacting with proofs for the circuits

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped Blobstream X circuits, we discovered eight findings. Five
critical issues were found. One was of low impact and the remaining findings were informational
in nature.

Additionally, Zellic recorded its notes and observations from the assessment for Celestia’s benefit
in the Discussion section (4. ↗) at the end of the document.

Zellic © 2024 ← Back to Contents Page 5 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

Breakdown of Finding Impacts

Impact Level Count

■ Critical 5

■ High 0

■ Medium 0

■ Low 1

■ Informational 2

Zellic © 2024 ← Back to Contents Page 6 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

2. Introduction 2.1. About Blobstream X

Celestia is amodular data availability network thatmakes it easy for anyone to securely launch their
own blockchain. Celestia is optimized for ordering transaction data andmaking it available for any-
one to download and verify with a light node.

Formerly known as the Quantum Gravity Bridge (QGB), Blobstream relays commitments to Celes-
tia’s data root to an on-chain light client, enabling EVMdevelopers to create high-throughput L2s as
easily as they develop smart contracts.

2.2. Methodology

During a security assessment, Zellic works through various testing methods along with a manual
review. In some cases for a ZKP circuit, we also provide someproofs for soundness. Themajority of
the time is spent on amanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Underconstrained circuits. The most common type of vulnerability in a ZKP circuit is not
adding sufficient constraints to the system. This leads to proofs generated with incorrect
witnesses in terms of the specification of the project being accepted by the ZKP verifier. We
manually check that the set of constraints satisfies soundness, enough to remove all such
possibilities, and in some cases, provide a proof of the fact.

Overconstrained circuits. While rare, it is possible that a circuit is overconstrained. In this
case, appropriately assigning witness will become impossible, leading to a vulnerability. To
prevent this, we manually check that the constraint system is set up with completeness so
that the proofs generatedwith the correct set of witnesses indeed pass the ZKP verification.

Missing range checks. This is a popular type of an underconstrained circuit vulnerability.
Due to the usageof field arithmetic, overflowchecks and range checks serve a hugepurpose
to build applications that work over the integers. We manually check the code for such
missing checks, and in certain cases, provide a proof that the given set of range checks are
sufficient to constrain the circuit up to specification.

Cryptography. ZKP technology and their applications are based on various aspects of
cryptography. We manually review the cryptography usage of the project and examine the
relevant studies and standards for any inconsistencies or vulnerabilities.

CodeMaturity. We look for potential improvements in the codebase in general. We look for
violations of industry best practices and guidelines and code quality standards.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect

Zellic © 2024 ← Back to Contents Page 7 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

its impact. For instance, a highly severe issue’s impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an “Informational”
findinghigher thana “Low”finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped circuits itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 8 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

2.3. Scope

The engagement involved a review of the following targets:

BlobstreamXCircuits

Repository https://github.com/succinctlabs/blobstreamx ↗

Version blobstreamx: 3b3a518a3ff273a56fb0544306cc9c1c4e9602a0

Programs • builder.rs L81-L102
• builder.rs L104-L139
• builder.rs L141-L236
• builder.rs L238-L350
• builder.rs L352-L383
• next_header.rs L25-L47
• header_range.rs L32-L54

Type Rust

Platform Plonky2x

Audit Fix Version[1] c20d19cc8a5f8eca3ea039858847326405e3f346

2.4. Project Overview

Zellicwas contracted toperformasecurity assessmentwith twoconsultants for a total of 1.1 person-
weeks. The assessment was conducted over the course of 5 calendar days.

Contact Information

1 Version including fixes for the findings in this report, as well as other changes that have not been fully reviewed by the
Zellic team.

Zellic © 2024 ← Back to Contents Page 9 of 30

https://github.com/succinctlabs/blobstreamx

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

The following project manager was associated
with the engagement:

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Malte Leip
Engineer
malte@zellic.io ↗

Mohit Sharma
Engineer
mohit@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

February 29, 2024 Kick-off call

February 29, 2024 Start of primary review period

March 4, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 10 of 30

mailto:chad@zellic.io
mailto:malte@zellic.io
mailto:mohit@zellic.io

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

3. Detailed Findings 3.1. Data hash in return value of prove_next_header_data_commitment under-
constrained

Target builder

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

The prove_next_header_data_commitment takes trusted inputs prev_header_hash and
prev_block_number and assumes that prev_header_hash is the Merkle root hash of the block
at height prev_block_number. It is intended to return theMerkle root hash of aMerkle tree contain-
ing a sole leaf abi.encode(prev_block_number, DataHash), where the second argument is the
DataHash field of the block with headerMerkle-root hash prev_header_hash.

However, while the DataHash field associated to prev_header_hash is constrained to be the
protobuf-decoding of data_comm_proof.data_hash_proofs[0].leaf, an unconstrained witness
data_comm_proof.data_hashes[0] is instead usedwhen constructing the return value.

A similar oversight is also present in prove_subchain.

The prove_subchain function returns a MapReduceSubchainVariable containing the Merkle-root
hash of the batches’ data commitments, calculated as follows:

let data_merkle_root = self.get_data_commitment::<BATCH_SIZE>(
&data_comm_proof.data_hashes,
batch_start_block,
end_block_num,

);

The leaf data used here is data_comm_proof.data_hashes, which is, however, completely uncon-
strained.

Elsewhere in the function, aMerkle inclusion proof for the DataHash field of the enabled Tendermint
blocks is checked:

let data_hash_proof_root = self
.get_root_from_merkle_proof::<HEADER_PROOF_DEPTH,
PROTOBUF_HASH_SIZE_BYTES>(

&data_comm_proof.data_hash_proofs[i],
&data_hash_path,

);

Zellic © 2024 ← Back to Contents Page 11 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

Later verification of data_hash_proof_root for enabled blocks shows that
data_comm_proof.data_hash_proofs[i].leaf is the protobuf encoding of the
DataHash field of the associated Tendermint block. However, there is no check
to ensure that data_comm_proof.data_hashes[i] is the protobuf decoding of
data_comm_proof.data_hash_proofs[i].leaf.

Impact

An attacker could generate a proof with arbitrary data hashes of their choosing in the data commit-
ments.

Recommendations

Consider using data_comm_proof.data_hash_proofs[i].leaf instead of
data_comm_proof.data_hashes[i] to construct the data commitments. Note that
data_comm_proof.data_hash_proofs[i].leaf is the protobuf encoding of the DataHash field,
so it consists of two bytes of protobuf header followed by the actual 32 bytes of the DataHash field.

Remediation

This issue has been acknowledged by Succinct, and a fixwas implemented in the following commit:
bbcae1c7 ↗.

Zellic © 2024 ← Back to Contents Page 12 of 30

https://github.com/succinctlabs/blobstreamx/commit/bbcae1c778771f574afec409b4adc5292ec380db

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

3.2. End block’s header hash is unconstrained for a subchain proof

Target DataCommitmentBuilder

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

The output for prove_subchain circuit contains the following values.

MapReduceSubchainVariable {
is_enabled: is_batch_enabled,
start_block: batch_start_block,
start_header: batch_start_header_hash,
end_block: batch_end_block,
end_header: batch_end_header_hash,
data_merkle_root,

}

The end_header is the header hash of the last block in the subchain. However, the value it contains
(i.e., batch_end_header_hash) is taken directly from the input and left completely unconstrained.

Impact

Amalicous prover can supply an arbitrary value for the end header, which allows for theBlobstream
state to differ from the on-chain state.

Recommendations

The loop in prove_subchain calculates the header for each block in the chain and verifies chain in-
tegrity usingMerkle proofs.

curr_header = last_block_id_proof_root;

At the end of the loop, curr_headerwill contain the hash of the last block, and it should be asserted
that this hash is equal to the value being returned.

let end_hash_matches_calculated_hash = self.is_equal(batch_end_header_hash,

Zellic © 2024 ← Back to Contents Page 13 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

curr_header);
self.assert_is_equal(end_hash_matches_calculated_hash, true_bool);

Remediation

This issue has been acknowledged by Succinct, and a fixwas implemented in the following commit:
34a9d2eb ↗.

Zellic © 2024 ← Back to Contents Page 14 of 30

https://github.com/succinctlabs/blobstreamx/commit/34a9d2ebb9578a886cf3e8319bb4b6bf91f2e6f3

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

3.3. Inputs to prove_subchain are unconstrained

Target DataCommitmentBuilder

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

The prove_data_commitment makes multiple calls to prove_subchain and merges the results to-
gether. The inputs for these calls are generated via the hintsmechanism.

let start_block =
builder.add(map_ctx.start_block, map_relative_block_nums.as_vec()[0]);

let last_block = builder.add(
map_ctx.start_block,
map_relative_block_nums.as_vec()[BATCH_SIZE - 1],

);

// The query_end_block = min(batch_end_block, global_end_block) for fetching
the data commitment inputs.

// If batch_end_block > global_end_block, data_comm_proof will be filled with
dummy values.

// This is because prove_subchain only checks up to global_end_block, and doing
so reduces RPC calls.

let batch_end_block = builder.add(last_block, one);
let past_global_end = builder.gt(batch_end_block, global_end_block);
let query_end_block = builder.select(past_global_end, global_end_block,

batch_end_block);

// Fetch and read the data commitment inputs.
let mut input_stream = VariableStream::new();
input_stream.write(&start_block);
input_stream.write(&query_end_block);
let data_comm_fetcher = DataCommitmentOffchainInputs::<BATCH_SIZE> {};
let output_stream = builder

.async_hint(input_stream, data_comm_fetcher);
let data_comm_proof = output_stream

.read::<DataCommitmentProofVariable<BATCH_SIZE>>(builder);

There are constraints enforced on start_block and batch_end_block before construction. How-
ever, once the arguments are constructed in data_comm_proof, they are left unconstrained and

Zellic © 2024 ← Back to Contents Page 15 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

passed directly to prove_subchain.

Impact

Since the inputs to prove_subchain are left completely unconstrained, the prover can violate any
assumptionsmadeby the functionandcauseundefinedbehavior asdemonstrated inFindings3.6. ↗
and 3.7. ↗.

Recommendations

Add proper validation logic for consistency between the initial arguments to themap block and the
constructed data_comm_proof object.

builder.assert_is_equal(start_block, data_comm_proof.start_block_height);
builder.assert_is_equal(query_end_block, data_comm_proof.end_block_height);

Remediation

This issue has been acknowledged by Succinct, and a fixwas implemented in the following commit:
92e913e2 ↗.

Zellic © 2024 ← Back to Contents Page 16 of 30

https://github.com/succinctlabs/blobstreamx/commit/92e913e2ce1c9230210d5760ba9757c5bfaa9d7c

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

3.4. End block header is never checked if end block is too far

Target DataCommitmentBuilder

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

The prove_data_commitment function receives as arguments start and end block heights
start_block and end_block as well as end_header_hash, the hash of the header at block height
end_block (it also receives a block-header hash start_header_hash, which is however unused).

The block-header hash start_header_hash acts as a root of trust: in the mapping function,
prove_subchain is called, which will, for the batch in which the block with block height end_block
- 1 lies, check that the next block-header hash of the block in the chain with claimed height
end_block - 1 is equal to the end_header_hash that was passed to prove_data_commitment
(in the following snippet, global_end_header_hash is what was passed as end_header_hash to
prove_data_commitment):

let root_matches_end_header =
self.is_equal(last_block_id_proof_root, *global_end_header_hash);

let end_header_check = self.or(is_not_last_block, root_matches_end_header);
self.assert_is_equal(end_header_check, true_bool);

However, if end_block > start_block + NB_MAP_JOBS * BATCH_SIZE, then no batch will contain
the block with block height end_block - 1.

The missing check of the last enabled block against a trusted header hash as a root of trust thus
means that it is possible to use an arbitrary chain of blocks instead, with data hashes of an attacker’s
choosing.

Impact

An attacker could generate a proof for the CombinedSkipCircuit in which target_block >
trusted_block + NB_MAP_JOBS * BATCH_SIZE and return a data commitment with arbitrary data
hashes of the attacker’s choosing.

Zellic © 2024 ← Back to Contents Page 17 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

Recommendations

Consider adding a constraint in prove_data_commitment that verifies end_block <= start_block
+ NB_MAP_JOBS * BATCH_SIZE.

Remediation

This issue has been acknowledged by Succinct, and a fixwas implemented in the following commit:
3e2be3f4 ↗.

Zellic © 2024 ← Back to Contents Page 18 of 30

https://github.com/succinctlabs/blobstreamx/commit/3e2be3f40396033a2718de45a25e3c41b14f751a

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

3.5. Tendermint X TendermintSkipCircuit skip function’s return value need not be
related to parameters

Target CombinedSkipCircuit

Category CodingMistakes Severity Critical

Likelihood High Impact Critical

Description

In the CombinedSkipCircuit’s define function, a trusted block height and header hash are pro-
vided as public inputs (trusted_block and trusted_header_hash) as well as a target block height
(target_block). The target block’s header hash is then obtained by using the Tendermint X circuit,
TendermintSkipCircuit:

let target_header_hash = builder.skip::<MAX_VALIDATOR_SET_SIZE,
CHAIN_ID_SIZE_BYTES>(
C::CHAIN_ID_BYTES,
C::SKIP_MAX,
trusted_block,
trusted_header_hash,
target_block,

);

For soundness of the CombinedSkipCircuit, the skip function should ensure that, assuming that
trusted_block and trusted_header_hash are legitimate, the target_header_hash is the hash of a
legitimateTendermintblockwithblockheighttarget_blockaccording to theTendermint light client
consensus rules.

However, the skip function is implemented as follows.

fn skip<const MAX_VALIDATOR_SET_SIZE: usize, const CHAIN_ID_SIZE_BYTES:
usize>(
&mut self,
chain_id_bytes: &[u8],
skip_max: usize,
trusted_block: U64Variable,
trusted_header_hash: Bytes32Variable,
target_block: U64Variable,

) -> Bytes32Variable {
let mut input_stream = VariableStream::new();
input_stream.write(&trusted_block);

Zellic © 2024 ← Back to Contents Page 19 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

input_stream.write(&trusted_header_hash);
input_stream.write(&target_block);
let output_stream = self.async_hint(

input_stream,
SkipOffchainInputs::<MAX_VALIDATOR_SET_SIZE> {},

);
let skip_variable =
output_stream.read::<VerifySkipVariable<MAX_VALIDATOR_SET_SIZE>>(self);

let target_header = skip_variable.target_header;

self.verify_skip::<MAX_VALIDATOR_SET_SIZE, CHAIN_ID_SIZE_BYTES>(
chain_id_bytes,
skip_max,
&skip_variable,

);
target_header

}

No constraints are introduced by this function itself, only by the following call.

self.verify_skip::<MAX_VALIDATOR_SET_SIZE, CHAIN_ID_SIZE_BYTES>(
chain_id_bytes,
skip_max,
&skip_variable,

);

Note that before this call, while the arguments trusted_block, trusted_header_hash, and tar-
get_block are used to calculate skip_variable in this implementation of the prover, there are no
constraints introduced in the circuit enforcing a relation between skip_variable and these argu-
ments. An attacker can thus use an arbitrary chain of Tendermint blocks that pass the consensus
checks — but using a fake initial block skip_variable.trusted_header of their choosing — and
thereby havewide latitude in what to choose as skip_variable.target_headerwhile fuilfilling the
verify_skip constraints. For example, the attacker could use arbitrary validators they made up to
create a chain of Tendermint blocks, with arbitrary data hashes of their choosing included in these
blocks.

Impact

The target_header_hash used by CombinedSkipCircuit can be set to the hash of a Tendermint
block for which the attacker could set the data hash and data hash of preceeding blocks in a valid
chain to a value of their choosing. As target_header_hash is used as the root of trust for the
prove_data_commitment function, this ultimatelymeans that theattacker canproduceaCombined-
SkipCircuit proof for arbitrary data commitments.

Zellic © 2024 ← Back to Contents Page 20 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

Recommendations

In the skip function, add constraints that check that skip_variable.trusted_block,
skip_variable.trusted_header, and skip_variable.target_block are equal to the param-
eters trusted_block, trusted_header_hash, and target_block that were passed to the function,
respectively.

Remediation

This issue has been acknowledged by Succinct, and a fixwas implemented in the following commit:
1800e7c8 ↗.

Zellic © 2024 ← Back to Contents Page 21 of 30

https://github.com/succinctlabs/blobstreamx/commit/1800e7c8db84fff7aa0e02e52510336930d1478b

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

3.6. Enabled leaves in get_data_commitment can underflow

Target DataCommitmentBuilder

Category CodingMistakes Severity Low

Likelihood High Impact Low

Description

The following assumption in get_data_commitment is wrong.

// If end_block < start_block, then this data commitment will be marked as
disabled, and the

// output of this function is not used. Therefore, the logic assumes
// nb_blocks is always positive.

The batch is disabled if and only if start_block >= global_end_block, but this function is actu-
ally called with batch_end, which can still be lower. This means you can end up with a case where
end_block > start_block.

While this implicit assumption has no significant impact by itself, it can be chainedwith another un-
enforced assumption in get_data_commitment:

let nb_blocks_in_batch = self.sub(end_block, start_block);
// Note: nb_blocks_in_batch is assumed to be less than 2^32 (which is a

reasonable
// assumption for any data commitment as in practice, the number of blocks in a

data
// commitment range will be much smaller than 2^32). This is fine as
// nb_blocks_in_batch.limbs[1] is unused.
let nb_enabled_leaves = nb_blocks_in_batch.limbs[0].variable;

The number of enabled leaves is directly taken from the first limb, assuming the second to be zero.
However, in the case where end_block > start_block, nb_blocks_in_batch can have an integer
underflow.

Impact

A malicous prover can supply an arbitrary value for batch_end_block that is less than
batch_start_block, which causes nb_enabled_leaves to underflow and lead to undefined
behavior.

Zellic © 2024 ← Back to Contents Page 22 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

This vulnerability is however only exploitable when combined with another vulnerability such as
finding 3.3. ↗ or finding 3.8. ↗, and is thereforemarked as low impact.

Recommendations

Consider checking that end_block > start_block explicitly in get_data_commitment:

let is_valid = self.gt(end_block, start_block);
self.assert_is_equal(is_valid, true_bool);

Additionally, we recommend explicitly constraining the second limb to 0 as a sanity check

self.assert_is_equal(nb_blocks_in_batch.limbs[1].variable,
self.constant::<U64Variable>(0u64));

Remediation

This issue has been acknowledged by Succinct, and a fixwas implemented in the following commit:
7bb83e77 ↗.

Zellic © 2024 ← Back to Contents Page 23 of 30

https://github.com/succinctlabs/blobstreamx/commit/7bb83e77291f5332630a0335e071d84ed8a50fc8

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

3.7. Discrepancy in length of header chain and data commitment

Target DataCommitmentBuilder

Category CodingMistakes Severity Informational

Likelihood High Impact Informational

Description

The prove_subchain processes blocks in the range from batch_start_block (inclusive) to
min(batch_start_block + BATCH_SIZE, global_end_block) (exclusive). The end of the range
given here arises from two facts: processing stops with the block at height global_end_block, and
the loop starts at batch_start_block and runs for BATCH_SIZE iterations.

However, when calling get_data_commitment, the range passed is the one from
batch_start_block to min(batch_end_block, global_end_block):

let is_less_than_target = self.lte(batch_end_block, *global_end_block);
let end_block_num = self.select(is_less_than_target, batch_end_block,
*global_end_block);

let data_merkle_root = self.get_data_commitment::<BATCH_SIZE>(
&data_comm_proof.data_hashes,
batch_start_block,
end_block_num,

);

If get_data_commitment is passed a range larger than the maximum number of leaves, in this
case BATCH_SIZE, then the return value will be the same as if the range had width equal to the
number of leaves. Thus, in practice, the range used to calculate the Merkle root here is the
one from batch_start_block to min(batch_start_block + BATCH_SIZE, batch_end_block,
global_end_block).

For the range used for processing and the range used to construct the data-commitment Merkle
tree to be the same, it is thus required that batch_end_block >= min(batch_start_block +
BATCH_SIZE, global_end_block). Thus, if prove_subchain is called with arguments for which
batch_end_block < min(batch_start_block + BATCH_SIZE, global_end_block), then the
header hash chain will be verified for a different range than the range used to calculate the corre-
sponding data_merkle_root.

Zellic © 2024 ← Back to Contents Page 24 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

Impact

A malicous prover can supply an arbitrary value for batch_end_block which is less than
min(batch_start_block + BATCH_SIZE, global_end_block), which allows for the
batch_end_header_hash and data_merkle_root to correspond to different blocks in the on-
chain state.

This vulnerability is however only exploitable if inputs to the prove_subchain function are not con-
strained properly as in finding 3.3. ↗ and thereforemarked as informational.

Recommendations

This can bemitigated by adding a constraint to enforce a batch is of the proper length.

let nb_blocks = self.sub(batch_end_block, batch_start_block);
self.assert_is_equal(nb_blocks, BATCH_SIZE);

Remediation

This issue has been acknowledged by Succinct, and a fixwas implemented in the following commit:
92e913e2 ↗.

Zellic © 2024 ← Back to Contents Page 25 of 30

https://github.com/succinctlabs/blobstreamx/commit/92e913e2ce1c9230210d5760ba9757c5bfaa9d7c

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

3.8. Tendermint X TendermintVerify verify_skip_distance function contains in-
effective inequality checks

Target CombinedSkipCircuit

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The Tendermint X TendermintVerify verify_skip_distance function is implemented as follows:

fn verify_skip_distance(
&mut self,
skip_max: usize,
trusted_block: &U64Variable,
target_block: &U64Variable,

) {
let one = self.one();
let trusted_block_plus_one = self.add(*trusted_block, one);
// Verify target block > trusted block.
self.gt(*target_block, trusted_block_plus_one);

let skip_max_var = self.constant::<U64Variable>(skip_max as u64);
let max_block = self.add(*trusted_block, skip_max_var);
// Verify target block <= trusted block + skip_max.
self.lte(*target_block, max_block);

}

This function is intended to check that target_block > trusted_block and target_block <=
trusted_block + skip_max. However, self.gt(*target_block, trusted_block_plus_one);
only allocates a Boolean circuit variable and assigns it True if and only if the *target_block >
trusted_block_plus_one. This Boolean variable is, however, not constrained to be True, so the
inequality is not constrained to hold. This is analogous for the second inequality.

Impact

As Tendermint Xwas out of scope for this audit, we have not evaluated the impact for Tendermint X.
With regards to in-scope parts of Blobstream X, this bug, depending on behavior of the Tendermint
X skip function called as follows,

Zellic © 2024 ← Back to Contents Page 26 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

let target_header_hash = builder.skip::<MAX_VALIDATOR_SET_SIZE,
CHAIN_ID_SIZE_BYTES>(
C::CHAIN_ID_BYTES,
C::SKIP_MAX,
trusted_block,
trusted_header_hash,
target_block,

);

could allow an attacker to generate a CombinedSkipCircuit proof in which target_block <
trusted_block.

In this case, the check (seen below) done in prove_subchain to check the last header hash against
a trusted hash will never be carried out, allowing an attacker to use a chain of arbitrary header
hashes of their choosing (note that prove_data_commitment never does any checks involving
start_header_hash, the root of trust for theheader hashes is purely the checkon end_header_hash
done in prove_subchain).

// If this is the last valid block, verify the last_block_id_proof_root (header
hash of block curr_idx+1) is equal to the global_end_header_hash.

// This is the final step in the verification that global_start_block ->
global_end_block is linked.

let root_matches_end_header =
self.is_equal(last_block_id_proof_root, *global_end_header_hash);

let end_header_check = self.or(is_not_last_block, root_matches_end_header);
self.assert_is_equal(end_header_check, true_bool);

All batches inprove_data_commitmentwouldbedisabled, so the reductionstepswill alwayschoose
the left subchains’ data Merkle root. Thus, the data-commitment Merkle root ultimately returned
would be the one from the very first batch, where a full batch worth of committed data would be
returned, with the data hashes thus choosable by the attacker. See also the description of Finding
3.6. ↗.

Recommendations

As CombinedSkipCircuit exposes trusted_block and target_block publicly, the check that tar-
get_block > trusted_block can also be carried out outside the circuit. In this case, the circuit
is intended to be used together with an EVM smart contract BlobstreamX.sol, which contains the
following check in the commitHeaderRange function that appears to prevent providing a proof with
target_block < trusted_block.

if (_targetBlock <= latestBlock || _targetBlock - latestBlock >
DATA_COMMITMENT_MAX) {
revert TargetBlockNotInRange();

Zellic © 2024 ← Back to Contents Page 27 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

}

As long as such checks are made by the verifier wherever the proofs of the CombinedSkipCircuit
circuit are used, it is not necessary tomake in-circuit changes to prevent impact on CombinedSkip-
Circuit.

As the ineffective inequality checks in Tendermint X’s verify_skip_distance function were in-
tended to be enforced,we recommend constraining the twoBoolean variables returnedby self.gt
and self.lte to be True.

Remediation

This issue has been acknowledged by Succinct, and a fixwas implemented in the following commit:
29945869 ↗

Zellic © 2024 ← Back to Contents Page 28 of 30

https://github.com/succinctlabs/blobstreamx/commit/29945869c2972bb31a56837d23425912d0628ee6

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. Dependency on soundness of Tendermint X circuits

The in-scope CombinedSkipCircuit and CombinedStepCircuit circuits of the Blobstream X project
build upon the TendermintSkipCircuit and TendermintStepCircuit circuits of the Tendermint X
project in a crucial way. Vulnerabilities in those Tendermint X circuits could significantly impact
soundness of the Blobstream X circuits that we audited.

As Tendermint X was not in scope for this audit, we did not review Tendermint X code. However,
while trying toanswer thequestionofwhether theTendermintSkipCircuit’sskip functionconstrains
the end-block height to be larger than the start-block height (which was relevant for the in-scope
CombinedSkipCircuit circuit, see Finding 3.8. ↗, but not clear from the name), we found two bugs in
theTendermintXcircuits, described inFindings3.5. ↗ and3.8. ↗,withFinding3.5. ↗ havingcritical im-
pact. Aswe found these issues by coincidencewhile only skimming a small part of the Tendermint X
circuit code, it appears plausible that there could be further significant vulnerabilities in the Tender-
mint X circuits. We thus recommend to have the TendermintSkipCircuit and TendermintStepCircuit
circuits of the Tendermint X project reaudited prior to deploying Blobstream X.

4.2. Confusing variable names

Clear and consistent names for variables and functions help prevent confusion and make it easier
to reason about the code. In some parts of the codebase, names could be improved to increase
consistency and reduce possibility of confusion.

The prove_data_commitment function has an argument called start_block. In the closure used
as the map function in the mapreduce call, a variable called start_block occurs as well but with a
differentmeaning— it is thefirst blockof thebatch. To reduceconfusion,we recommendusingmore
distinct names, such as global_start_block for the function argument and batch_start_block in
the closure.

Variables containing hashes of block headers are inconsistent in the naming scheme, some called
something_header, others something_header_hash.

In many places, names such as start_block are used for the height of a block in Tendermint ter-
minology. A name such as start_block_height would thus make the content of the variable
clearer.

Zellic © 2024 ← Back to Contents Page 29 of 30

BlobstreamX Zero Knowledge Security Assessment March 4, 2024

5. Assessment Results At the time of our assessment, the reviewed codewas not deployed to the EthereumMainnet.

During our assessment on the scopedBlobstreamXcircuits, wediscoveredeight findings. Five crit-
ical issueswere found. Onewas of low impact and the remaining findingswere informational in na-
ture. Succinct acknowledged all findings and implemented fixes.

5.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 30 of 30

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Blobstream X
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Data hash in return value of prove_next_header_data_commitment underconstrained
	End block's header hash is unconstrained for a subchain proof
	Inputs to prove_subchain are unconstrained
	End block header is never checked if end block is too far
	Tendermint X TendermintSkipCircuit skip function's return value need not be related to parameters
	Enabled leaves in get_data_commitment can underflow
	Discrepancy in length of header chain and data commitment
	Tendermint X TendermintVerify verify_skip_distance function contains ineffective inequality checks

	Discussion
	Dependency on soundness of Tendermint X circuits
	Confusing variable names

	Assessment Results
	Disclaimer

