
Auditing Report
Hardening Blockchain Security with Formal Methods

FOR

Tendermintx

Veridise Inc.
April 5, 2024

▶ Prepared For:

Succinct
https://succinct.xyz/

▶ Prepared By:

Shankara Pailoor
Timothy Hoffman

▶ Contact Us: contact@veridise.com

▶ Version History:

Mar. 28, 2024 Initial Draft

© 2024 Veridise Inc. All Rights Reserved.

https://succinct.xyz/
contact@veridise.com

Contents

Contents iii

1 Executive Summary 1

2 Project Dashboard 3

3 Audit Goals and Scope 5
3.1 Audit Goals . 5
3.2 Audit Methodology & Scope . 5
3.3 Classification of Vulnerabilities . 6

4 Vulnerability Report 7
4.1 Detailed Description of Issues . 8

4.1.1 V-TEND-VUL-001: A Trusted Validator Can Forge Headers During Skip
Verification . 8

4.1.2 V-TEND-VUL-002: Outdated Comments/Variable Names 10
4.1.3 V-TEND-VUL-003: Missing Array-Out-of-Bounds Checks 11
4.1.4 V-TEND-VUL-004: Unused VALIDATOR_SET_MAX Parameter 13

Veridise Audit Report: Tendermintx © 2024 Veridise Inc.

Executive Summary 1
From Mar. 12, 2024 to Mar. 19, 2024, Succinct engaged Veridise to review the security of
Tendermintx, their Tendermint ZK light client. The review covered their ZK circuits and
smart contracts which serve to verify Tendermint headers according to the Tendermint light
client protocols for skip and sequential verification. Veridise conducted the assessment over 2
person-week, with 2 engineers performing an extensive manual review of the code over 1 week
on commits 30fa25a72 -a6b05bb97.

Code assessment. The Tendermintx developers provided the source code of the Tendermintx
contracts and circuits for review which contained extensive documentation in the form of
READMEs and comments within the code. To facilitate the Veridise auditors’ understanding of
the code, the Tendermintx developers provided a Notion document describing the intended
behavior of the circuits along with specific types of bugs they wanted the auditors to be aware of.
The source code contained a test suite, which the Veridise auditors noted included end-to-end
functional tests along with unit tests. The codebase also was subject to two previous audits,
both of which are publicly available. All issues from the previous audits had been resolved and,
the Veridise auditors found the code to be of very high quality overall.

Summary of issues detected. The audit uncovered 4 issues, 1 of which are assessed to be of
high or critical severity by the Veridise auditors. Specifically, V-TEND-VUL-001 was a logical
error which allowed a malicious validator to forge headers. The Veridise auditors also identified
3 informational findings, and all the above issues were fixed immediately after disclosure.

Recommendations. After auditing the protocol, the auditors had a few suggestions to improve
Tendermintx. While the code was generally well tested, the auditors felt that the testing could
be improved by adding so-called "negative" tests which ensure that undesirable behavior
is not permitted. Such tests are more important for ZK protocols as they can help detect
underconstrained bugs if/when the circuit is refactored. The auditors also recommend that
the Tendermintx developers add cargo-audit checks to their CI-workflow to ensure vulnerable
libraries are not used.

Disclaimer. We hope that this report is informative but provide no warranty of any kind,
explicit or implied. The contents of this report should not be construed as a complete guarantee
that the system is secure in all dimensions. In no event shall Veridise or any of its employees be
liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the results reported here.

Veridise Audit Report: Tendermintx © 2024 Veridise Inc.

https://github.com/succinctlabs/tendermintx
https://tendermint.com/
https://arxiv.org/pdf/2010.07031.pdf
https://github.com/succinctlabs/tendermintx/commit/30fa25a72e9a8364abe33784e10a77d2cbe9810b
https://github.com/succinctlabs/tendermintx/commit/a6b05bb97b54a68cb787780b8d70a12ce943160a
https://github.com/succinctlabs/tendermintx/blob/main/audits/
https://crates.io/crates/cargo-audit

Project Dashboard 2
Table 2.1: Application Summary.

Name Version Type Platform
Tendermintx 30fa25a-a6b05bb Rust and Solidity Ethereum

Table 2.2: Engagement Summary.

Dates Method Consultants Engaged Level of Effort
Mar. 12 - Mar. 19, 2024 Manual 2 2 person-week

Table 2.3: Vulnerability Summary.

Name Number Fixed Acknowledged
Critical-Severity Issues 1 1 1
High-Severity Issues 0 0 0
Medium-Severity Issues 0 0 0
Low-Severity Issues 0 0 0
Warning-Severity Issues 0 0 0
Informational-Severity Issues 3 3 3
TOTAL 4 4 4

Table 2.4: Category Breakdown.

Name Number
Maintainability 3
Logic Error 1

Veridise Audit Report: Tendermintx © 2024 Veridise Inc.

Audit Goals and Scope 3
3.1 Audit Goals

The engagement was scoped to provide a security assessment of Tendermintx’s smart contracts
and ZK circuits. In our audit, we sought to answer high-level questions such as:

▶ Does Tendermintx obey the verification protocol for Tendermint light clients as specified
in the original whitepaper?

▶ Do the circuits contain any under-constrained or over-constrained vulnerabilities which
are common to ZK circuits?

▶ Does the Tendermintx smart contract include the required checks on the public inputs of
the circuit?

Answering those questions required investigating several other low-level questions and attack
scenarios some of which are listed below:

▶ Does the circuit prevent malicious validators from double voting to inflate their voting
power?

▶ The circuit includes many merkle proof checks to validate the fields of the header. Are the
proofs susceptible to second pre-image attacks? Moreover, are all the leaves of the proof
properly constrained?

▶ Are the messages signed by the headers properly deserialized? This is especially important
as the messages from Tendermint validators can be of varying length.

▶ Does skip verification ensure the untrusted header’s distance from the trusted header
is larger than 1 and within the maximum skip distance? Likewise, does the sequential
header verification ensure that the untrusted header is the successor of the trusted one?

3.2 Audit Methodology & Scope

Audit Methodology. To address the questions above, we performed an extensive manual
audit of the code base.

Scope. The scope of the audit included all code under circuits/, which contains the circuits to
generate ZK proofs for skip and sequentialverification as well ascontracts/src/TendermintX.sol,
which exposes methods to allow users to actually rotate the trusted header using ZK proofs.

Methodology. Veridise auditors reviewed the reports of previous audits for Tendermintx, inspected
the provided tests, and read the Tendermintx documentation. They then began an extensive
manual audit of the code. During the audit, the Veridise auditors regularly met with the
Tendermintx developers over Zoom and communicated over Slack to ask questions about the
code.

Veridise Audit Report: Tendermintx © 2024 Veridise Inc.

https://arxiv.org/pdf/2010.07031.pdf

6 3 Audit Goals and Scope

3.3 Classification of Vulnerabilities

When Veridise auditors discover a possible security vulnerability, they must estimate its severity
by weighing its potential impact against the likelihood that a problem will arise. Table 3.1 shows
how our auditors weigh this information to estimate the severity of a given issue.

Table 3.1: Severity Breakdown.

Somewhat Bad Bad Very Bad Protocol Breaking
Not Likely Info Warning Low Medium

Likely Warning Low Medium High
Very Likely Low Medium High Critical

In this case, we judge the likelihood of a vulnerability as follows in Table 3.2:

Table 3.2: Likelihood Breakdown

Not Likely A small set of users must make a specific mistake
Requires a complex series of steps by almost any user(s)

Likely - OR -
Requires a small set of users to perform an action

Very Likely Can be easily performed by almost anyone

In addition, we judge the impact of a vulnerability as follows in Table 3.3:

Table 3.3: Impact Breakdown

Somewhat Bad Inconveniences a small number of users and can be fixed by the user
Affects a large number of people and can be fixed by the user

Bad - OR -
Affects a very small number of people and requires aid to fix
Affects a large number of people and requires aid to fix

Very Bad - OR -
Disrupts the intended behavior of the protocol for a small group of
users through no fault of their own

Protocol Breaking Disrupts the intended behavior of the protocol for a large group of
users through no fault of their own

© 2024 Veridise Inc. Veridise Audit Report: Tendermintx

Vulnerability Report 4
In this section, we describe the vulnerabilities found during our audit. For each issue found,
we log the type of the issue, its severity, location in the code base, and its current status (i.e.,
acknowledged, fixed, etc.). Table 4.1 summarizes the issues discovered:

Table 4.1: Summary of Discovered Vulnerabilities.

ID Description Severity Status
V-TEND-VUL-001 A Trusted Validator Can Forge Headers in ... Critical Fixed
V-TEND-VUL-002 Outdated Comments/Variable Names Info Fixed
V-TEND-VUL-003 Missing Array-Out-of-Bounds Checks Info Fixed
V-TEND-VUL-004 Unused VALIDATOR_SET_MAX Parameter Info Fixed

Veridise Audit Report: Tendermintx © 2024 Veridise Inc.

8 4 Vulnerability Report

4.1 Detailed Description of Issues

4.1.1 V-TEND-VUL-001: A Trusted Validator Can Forge Headers During Skip
Verification

Severity Critical Commit 30fa25a
Type Logic Error Status Fixed

File(s) circuits/builder/verifier.rs

Location(s) verify_skip, verify_trusted_validators
Confirmed Fix At a6b05bb

The skip verification phase of the tendermint light client protocol allows an untrusted, non-adjacent
header to be verified if:

1. The validators which signed the untrusted header comprise more than 1/3 of the total
voting power of the trusted header.

2. The combined voting power of the validators that signed the untrusted header exceeds
2/3 of the voting power for that header.

The tendermintx circuit incorrectly checked (1) as it checked that the validators of the trusted
header comprised more than 1/3 of the voting power of the untrusted header. This can be seen in
the code snippet below:

1 fn verify_skip<const VALIDATOR_SET_SIZE_MAX: usize, const CHAIN_ID_SIZE_BYTES: usize

>(

2 &mut self,

3 expected_chain_id_bytes: &[u8],

4 skip_max: usize,

5 trusted_block: U64Variable,

6 trusted_header_hash: Bytes32Variable,

7 target_block: U64Variable,

8 skip: &VerifySkipVariable<VALIDATOR_SET_SIZE_MAX>,

9) {

10 // Verify the target block is non-sequential with the trusted block and

within maximum

11 // skip distance.

12 self.verify_skip_distance(skip_max, &trusted_block, &target_block);

13

14 // Verify the validators from the target block marked

present_on_trusted_header

15 // are present on the trusted header, and comprise at least 1/3 of the total

voting power

16 // on the target block.

17 self.verify_trusted_validators(

18 &skip.target_block_validators,

19 skip.target_block_nb_validators,

20 trusted_header_hash,

21 &skip.trusted_header_validator_hash_proof,

22 &skip.trusted_header_validator_hash_fields,

23 skip.trusted_block_nb_validators,

24);

25 }

© 2024 Veridise Inc. Veridise Audit Report: Tendermintx

4.1 Detailed Description of Issues 9

As a consequence, a trusted validator could forge headers by marking themselves as a validator
on the new header and setting their voting power to be more than 1/3 of the total voting power
on the new header.

Impact The following exploit scenario is possible:

1. Alice is a trusted validator.
2. Alice observes that the TVL in the bridge using the tendermintx light client exceeds the

amount they staked.
3. She forges a new header, creating new keys to impersonate the other validators, sets their

voting power to +1/3 of the total voting power.
4. She generates a ZK proof, and gets the new header verified.

Recommendation We recommend updating the check for (1) to check that the validators of
the new header comprise +1/3 of the voting power on the trusted header.

Developer Response The tendermintx developers implemented the fix in this PR: https:
//github.com/succinctlabs/tendermintx/pull/73.

Veridise Audit Report: Tendermintx © 2024 Veridise Inc.

https://github.com/succinctlabs/tendermintx/pull/73
https://github.com/succinctlabs/tendermintx/pull/73

10 4 Vulnerability Report

4.1.2 V-TEND-VUL-002: Outdated Comments/Variable Names

Severity Info Commit 30fa25a
Type Maintainability Status Fixed

File(s) circuits/builder/verify.rs

Location(s) multiple
Confirmed Fix At 2f51e5f

There are a couple of locations where the variable names and surrounding comments should be
updated to be consistent with the code:

1. In verify_skip(), the comment (on lines 540-541) indicates that the voting power of the
trusted validators should be ≥ 1

3 ∗ 𝑇𝑂𝑇𝐴𝐿_𝑉𝑃 whereas it should be strictly greater.

1 // Verify the validators from the target block marked present_on_trusted_header
2 // are present on the trusted header, and comprise at least 1/3 of the total voting

power

Snippet 4.1: Excerpt from verify_skip()

2. In verify_voting_threshold() the variable name gte_threshold indicates that the result
will be true if the value provided was greater than or equal to the threshold. However, the
computation checks if it is strictly larger and the surrounding comments agree with that
computation.

Impact Code readability.

Recommendation

1. The phrase "at least" should be changed to "more than"
2. The variable should be renamed gt_threshold

Developer Response The tendermintx developers implemented the fix in this PR: https:
//github.com/succinctlabs/tendermintx/pull/72.

© 2024 Veridise Inc. Veridise Audit Report: Tendermintx

https://github.com/succinctlabs/tendermintx/pull/72
https://github.com/succinctlabs/tendermintx/pull/72

4.1 Detailed Description of Issues 11

4.1.3 V-TEND-VUL-003: Missing Array-Out-of-Bounds Checks

Severity Info Commit 30fa25a
Type Maintainability Status Fixed

File(s) circuits/builder/verify.rs

Location(s) is_voting_power_greater_than_threshold
Confirmed Fix At 2f51e5f

The function is_voting_power_greater_than_threshold() iterates over a validator_voting_power
array and sums their voting power. The loop which accumulates the voting power uses the
bound VALIDATOR_SET_SIZE_MAX but there is no check that the length of the arrays are equal
to VALIDATOR_SET_SIZE_MAX. Based on current usage of the function, it can be inferred that
validator_voting_power.len() == in_group.len() == VALIDATOR_SET_SIZE_MAX but that is not
made explicit in this function.

1 fn is_voting_power_greater_than_threshold<const VALIDATOR_SET_SIZE_MAX: usize>(
2 &mut self,
3 validator_voting_power: &[U64Variable],
4 in_group: &[BoolVariable],
5 total_voting_power: &U64Variable,
6 threshold_numerator: &U64Variable,
7 threshold_denominator: &U64Variable,
8) -> BoolVariable {
9 let zero = self.constant::<U64Variable>(0);

10

11 let mut accumulated_voting_power = self.constant::<U64Variable>(0);
12 // Accumulate the voting power from the enabled validators.
13 for i in 0..VALIDATOR_SET_SIZE_MAX {
14 let select_voting_power = self.select(in_group[i], validator_voting_power

[i], zero);
15 accumulated_voting_power = self.add(accumulated_voting_power,

select_voting_power);
16 }
17

18 let scaled_accumulated = self.mul(accumulated_voting_power, *
threshold_denominator);

19 let scaled_threshold = self.mul(*total_voting_power, *threshold_numerator);
20

21 // Return accumulated_voting_power > total_vp * (threshold_numerator /
threshold_denominator).

22 self.gt(scaled_accumulated, scaled_threshold)
23 }

Snippet 4.2: Definition of is_voting_power_greater_than_threshold()

Impact The current usage of this function implies an array-out-of-bounds error but those
checks are located outside of this function rather than inside of it. It would be more clear to have
those assertions checked inside of this function since this is the location where those equality
properties are important. This can help to avoid/resolve issues that may occur if another usage
of the function is added in the future.

Veridise Audit Report: Tendermintx © 2024 Veridise Inc.

12 4 Vulnerability Report

Recommendation We recommend adding/moving the runtime assertion that the lengths of
validator_voting_power and in_group are equal to VALIDATOR_SET_MAX.

Developer Response The tendermintx developers implemented the fix in this PR: https:
//github.com/succinctlabs/tendermintx/pull/72.

© 2024 Veridise Inc. Veridise Audit Report: Tendermintx

https://github.com/succinctlabs/tendermintx/pull/72
https://github.com/succinctlabs/tendermintx/pull/72

4.1 Detailed Description of Issues 13

4.1.4 V-TEND-VUL-004: Unused VALIDATOR_SET_MAX Parameter

Severity Info Commit 30fa25a
Type Maintainability Status Fixed

File(s) circuits/builder/verify.rs

Location(s) get_total_voting_power
Confirmed Fix At 2f51e5f

In the function get_total_voting_power(), the template parameter VALIDATOR_SET_SIZE_MAX is
not used. Based on current usage of the function, it can be inferred that validator_voting_power.
len() == VALIDATOR_SET_SIZE_MAX. Similar blocks of code within the project use VALIDATOR_SET_SIZE_MAX
as the loop iteration count instead of using validator_voting_power.len().

1 fn get_total_voting_power<const VALIDATOR_SET_SIZE_MAX: usize>(
2 &mut self,
3 validator_voting_power: &[U64Variable],
4 nb_enabled_validators: Variable,
5) -> U64Variable {
6 // Note: This can be made more efficient by implementing the add_many_u32

gate in plonky2x.
7 let zero = self.zero();
8 let mut total = self.zero();
9

10 let mut is_enabled = self._true();
11 for i in 0..validator_voting_power.len() {
12 let idx = self.constant::<Variable>(L::Field::from_canonical_usize(i));
13

14 // If at_end, then the rest of the leaves (including this one) are
disabled.

15 let at_end = self.is_equal(idx, nb_enabled_validators);
16 let not_at_end = self.not(at_end);
17 is_enabled = self.and(not_at_end, is_enabled);
18

19 // If enabled, add the voting power to the total.
20 let val = self.select(is_enabled, validator_voting_power[i], zero);
21 total = self.add(total, val)
22 }
23 total
24 }

Snippet 4.3: Definition of get_total_voting_power()

Impact This code is inconsistent with the way similar blocks of code are written in the project.
Furthermore, using the len() function instead of the const value may prevent the Rust compiler
from performing some optimizations on the loop.

Recommendation We recommend changing the loop bound to be over VALIDATOR_SET_SIZE_MAX
and adding the assertion validator_voting_power.len() == VALIDATOR_SET_SIZE_MAX to make
the relationship between these values explicit within the get_total_voting_power() function.

Veridise Audit Report: Tendermintx © 2024 Veridise Inc.

14 4 Vulnerability Report

Developer Response The tendermintx developers implemented the fix in this PR: https:
//github.com/succinctlabs/tendermintx/pull/72.

© 2024 Veridise Inc. Veridise Audit Report: Tendermintx

https://github.com/succinctlabs/tendermintx/pull/72
https://github.com/succinctlabs/tendermintx/pull/72

	Veridise Auditing Report
	Contents
	Executive Summary
	Project Dashboard
	Audit Goals and Scope
	Audit Goals

	Audit Goals
	Audit Methodology & Scope

	Audit Methodology & Scope
	Classification of Vulnerabilities

	Classification of Vulnerabilities
	Vulnerability Report
	Detailed Description of Issues

	Detailed Description of Issues
	V-TEND-VUL-001: A Trusted Validator Can Forge Headers During Skip Verification
	V-TEND-VUL-002: Outdated Comments/Variable Names
	V-TEND-VUL-003: Missing Array-Out-of-Bounds Checks
	V-TEND-VUL-004: Unused VALIDATOR_SET_MAX Parameter

