GO otterSec

Security Assessment

March 9th, 2024 — Prepared by OtterSec

James Wang james.wang@osec.io

Robert Chen r@osec.io

mailto:james.wang@osec.io
mailto:r@osec.io

Table of Contents

Executive Summary
Overview
Key Findings
Scope

Findings

General Findings

OS-BLB-SUG-00 | Explicit Check For Zero Hash Results

OS-BLB-SUG-01 | Check Against Non Existing Nonce
Appendices

Vulnerability Rating Scale

Procedure

© 2024 Otter Audits LLC. All Rights Reserved.

01— Executive Summary

Overview

Celestia engaged OtterSec to assess the FunctionRegistry, SuccinctGateway,
TimelockUpgradeable , and BlobstreamX programs. This assessment was conducted between

February 20th and February 29th, 2024. For more information on our auditing methodology, refer to
Appendix B.

Key Findings

We produced 2 findings throughout this audit engagement.

We recommend addressing a potential edge case by asserting that the nonce used to index state data
commitments is greater than zero. This precautionary measure aims to prevent the utilization of an
uninitialized entry as the proof root (OS-BLB-SUG-01). Additionally, we highlighted the absence of a check
to disallow the usage of the function ID when it equals the default value (OS-BLB-SUG-00).

Scope

The source code was delivered to us in a Git repository at https://github.com/succinctlabs/blobstreamx.
This audit was performed against commit 2afc6ba.

A brief description of the programs is as follows:

Name Description

. . Manages zero knowledge (zk) verifier contract registration to allow
FunctionRegistry - -
users to verify the proofs on-chain safely.

SuccinctGateway A gatevs{ay contract that allows users to request for output or zkproof

generation.
TimelockUpgrade-

able Contains the timelocked upgrade contract.

Celestia’s new blobstream contract that uses Succinctx’s zkproof service

BlobstreamX to validate data commitments before including them in the Layer 1 state.

© 2024 Otter Audits LLC. All Rights Reserved. 2/8

https://github.com/succinctlabs/blobstreamx
https://github.com/succinctlabs/blobstreamx/commit/2afc6ba2c162f77931529265dcb2eff953e423b2

02 — Findings

Overall, we reported 2 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings do not have an immediate impact but will

aid in mitigating future vulnerabilities.

© 2024 Otter Audits LLC. All Rights Reserved.

Severity

CRITICAL
HIGH
MEDIUM
LOW
INFO

Count

3/8

03 — General Findings

Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent anti-patterns and may result in security issues in the future.

ID Description

The code base lacks a check to disallow the usage of _functionId whenitis
OS-BLB-SUG-00 equal to bytes32(0) .

There is a potential edge case where the _proofNonce used to index

0OS-BLB-SUG-01 state_dataCommitments should be asserted to be greater than zero to pre-
vent using an uninitialized entry as the proof root.

© 2024 Otter Audits LLC. All Rights Reserved. 4/8

Celestia Blobstream X Audit 03 — General Findings

Explicit Check For Zero Hash Results 0S-BLB-SUG-00

Description

The codebase utilizes _functionId in several places, including in guards against reentrancy in the
nonReentrant modifier and indexing into allowedProvers within the onlyProver modifier. The

program implicitly assumes that _functionId is never equal to bytes32(0) throughout the entire
codebase, based on the program calculating it by taking the hash of msg.sender and a salt value in
getFunctionld.

>_ FunctionRegistry.sol solidity

function getFunctionId(address _owner, bytes32 _salt)
public
pure
override
returns (bytes32 functionId)

functionId = keccak256(abi.encode(_owner, _salt));

While this assumption may seem reasonable given the hashing process, it is advisable to add an explicit
check to prevent the possibility of collisions where _functionId may be equal to bytes32(0) .

Remediation

Add an explicit check to ensure that _functionId is not equal to bytes32(0) before usingitin the
relevant parts of the code.

Patch

After careful consideration, the Succinct team concluded that the possibility of constructing a hash where
_functionId = bytes32(0) is exceedingly low. A fix is deemed unnecessary and the risk is accepted.

© 2024 Otter Audits LLC. All Rights Reserved. 5/8

Celestia Blobstream X Audit 03 — General Findings

Check Against Non Existing Nonce 0S-BLB-SUG-01

Description

In BlobstreamX , state_proofNonce is initialized to one within {initialize . However, since the
_proofNonce indexes state_dataCommitments in verifyAttestation, having _proofNonce as

zero may result in using the uninitialized default value (bytes32(0)) as the Merkle tree root. In practice,
this may not be exploitable due to the unlikeliness of constructing a valid Merkle tree with a root equal to
bytes32(0) thatincludes the desired data.

>_ BlobstreamX.sol solidity

function verifyAttestation(
uint256 _proofNonce,
DataRootTuple memory _tuple,
BinaryMerkleProof memory _proof
) external view returns (bool) {
if (frozen) {
revert ContractFrozen();
}
if (_proofNonce >= state_proofNonce) {
return false;

Remediation

Check _proofNonce is greater than zero to assert that _proofNonce is a valid index.

Patch

Resolved in c36881d.

© 2024 Otter Audits LLC. All Rights Reserved. 6/8

https://github.com/succinctlabs/blobstreamx/commit/c36881d80940ec652c5bcacb0305b6efbd576e0f

A — Vulnerability Rating Scale

We rated our findings according to the following scale. Vulnerabilities have immediate security implications.
Informational findings may be found in the General Findings.

CRITICAL

HIGH

MEDIUM

LOW

INFO

Vulnerabilities that immediately result in a loss of user funds with minimal preconditions.
Examples:

« Misconfigured authority or access control validation.
» Improperly designed economic incentives leading to loss of funds.

Vulnerabilities that may result in a loss of user funds but are potentially difficult to exploit.
Examples:

e Loss of funds requiring specific victim interactions.
« Exploitation involving high capital requirement with respect to payout.

Vulnerabilities that may result in denial of service scenarios or degraded usability.
Examples:

o Computational limit exhaustion through malicious input.
» Forced exceptions in the normal user flow.

Low probability vulnerabilities, which are still exploitable but require extenuating circumstances
or undue risk.

Examples:

« Oracle manipulation with large capital requirements and multiple transactions.

Best practices to mitigate future security risks. These are classified as general findings.
Examples:

« Explicit assertion of critical internal invariants.
« Improved input validation.

© 2024 Otter Audits LLC. All Rights Reserved. 718

B — Procedure

As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could be manipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the program'’s implementation requires a deep understanding of the chain’s
execution model. While this varies from chain to chain, some common implementation vulnerabilities
include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of thumb, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strong understanding of the underlying system and the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to comprehensively understand the program first. In our audits,
we always approach targets with a team of auditors. This allows us to share thoughts and collaborate,
picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2024 Otter Audits LLC. All Rights Reserved. 8/8

	Executive Summary
	Overview
	Key Findings
	Scope

	Findings
	General Findings
	[8.75em][l]OS-BLB-SUG-00 | Explicit Check For Zero Hash Results
	[8.75em][l]OS-BLB-SUG-01 | Check Against Non Existing Nonce

	Appendices
	Vulnerability Rating Scale
	Procedure

