
Security Audit Report

Celestia 2024 Q1: Blobstream

Authors: Josef Widder, Andrija Mitrovic

Last revised 15 February, 2024

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Table of Contents

Audit overview... 1
The Project 1

Conclusions 1

Audit dashboard.. 2
Target Summary 2

Engagement Summary 2

Severity Summary 2

Overview.. 3

Verification logic comparison between Tendermint light client and TendermintX .4
VerifyNonAdjacent and skip comparison 4

VerifyAdjacent and step comparison 8

Findings ... 10
Threshold check uses greater or equal instead of only greater 11

Missing checks in commit verification 13

Skip function does not check if the trusted and untrusted header are non adjacent 15

Function parameter naming is confusing 17

Minor code readability issue 18

Disclaimer.. 20

Appendix: Vulnerability Classification ... 21
Impact Score 21

Exploitability Score 21

Severity Score 22

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Audit overview 1

•
•

Audit overview

The Project
In January 2023, Informal Systems has conducted a security audit for Celestia of the light client verification
functions in TendermintX.

The main focus of the audit was the confirmation that all the necessary verification steps are done to include the
incoming untrusted header as a trusted one. This was done through comparison of the audited functions with the
standard Golang implementation of the Tendermint Light Client verification.

The audited commit hash is 477c704.

The audit took place from January 18, 2024 through February 2, 2024 by the following personnel:

Josef Widder
Andrija Mitrovic

Conclusions
In general, we found the codebase to be of very high quality: the code is well structured and easy to follow. In the
audit, we found 5 issues: 2 critical, 1 low and 2 informational in severity. The issues have been resolved. Besides
this, the Tendermint Light Client verification has some sanity checks that are not present in the TendermintX
implementation. These are pointed out in the report as a to do.

https://informal.systems/
https://github.com/succinctlabs/tendermintx/tree/477c70453f38b44568b4f7a0be81c28ef27b4271

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Audit dashboard 2

•
•
•

•

•
•
•

Audit dashboard

Target Summary
Type: Implementation
Platform: Rust and Solidity
Artifacts:

tendermintx

Engagement Summary
Dates: 18.02.2024 to 02.02.2024
Method: Manual code review and comparison against standard Golang implementation
Employees Engaged: 2

Severity Summary

Finding Severity #

Critical 2

High 0

Medium 0

Low 1

Informational 2

Total 5

https://github.com/succinctlabs/tendermintx/tree/477c70453f38b44568b4f7a0be81c28ef27b4271

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Overview 3

•
•

•

•

•
•

•

•

Overview
The code under review implements the verification of Tendermint headers based on the Tendermint light client
(skipping verification) and sequential verification (step). More concretely, only the latest header is used to validate a
requested header of greater height. If all the verification steps pass, the newly requested header replaces the
previously header stored in the contract.

In comparison to full Tendermint Light Clients (as in IBC), at the moment TendermintX has limited security-
related functionality:

only the latest header is currently used to verify new headers,
the contract currently does not have logic to freeze the light client in case of a light client attack, i.e., two
different headers for the same height that both pass verification (but such a logic can be added to the
contract in the future),
there is no check for the trusting period that is linked to security provided by proof-of-stake and the
unboding period. There is a check that makes sure that the new headers height is not much bigger than the
previous one. However, this does not prevent that the smart contract is not called for, say three weeks, and
therefore the old header is not trustworthy according to the Tendermint security model.

As a result, less security measures are in place compared to standard light clients, e.g., in the standard IBC
implementation. This audit’s results must be understood with respect to the limited functionality.

We don’t see a fundamental problem that this cannot be addressed in the future, in particular, as the
verification task that actually is implemented is the most complex logic, while the mentioned points above are just
bookkeeping logic, which can be easily added in the future.

The flow of adding a new header is as follows:

Initially one sets up a TendermintX circuit for a specific blockchain, and an initial header that is trusted
(subjective initialization).
A user provides a Tendermint RPC endpoint matching the blockchain specified in the circuit.
A user (or another contract) that wants to add a new header requests that a header of a specific height is
added
Via RPC calls, the witness fetching logic obtains the header data from the specified blockchain and then
supplies the witness data that is verified in the circuit.
Only the verification logic implemented in this circuit is the scope of this audit.

Our approach to audit the verification logic was to compare it to the industry quasi-standard golang
implementation in CometBFT, and check whether all checks are in place and implemented correctly.

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Verification logic comparison between Tendermint light
client and TendermintX

4

•

•

•
•

•

•

1.
2.

Verification logic comparison between Tendermint light client
and TendermintX
In the course of this audit, we utilized Tendermint's light client checks as a reference for comparison with
TendermintX checks. Both implementations feature two distinct functions dedicated to these checks:

The first one for checking incoming block headers that are non adjacent (that is, if the height of the locally
stored trusted header is h, the height of the to-be-verified header is greater than h+1):

In Tendermint, the equivalent function is named VerifyNonAdjacent .

In TendermintX, the equivalent function is named skip .
The second one for checking incoming block headers that are adjacent (that is, if the height of the locally
stored trusted header is h, the height of the to-be-verified header is equal to h+1):

In Tendermint, the equivalent function is named VerifyAdjacent .

In TendermintX, the equivalent function is named step .

VerifyNonAdjacent and skip comparison
Both implementations can divide the verification steps into following groups:

Sanity checks on untrusted header data structures and validity conditions.
Verification of the connection between the trusted and the incoming untrusted header - height comparison
and cross validator signature checks

First group - Sanity checks on header data structures and validity conditions
Upon scrutinizing the implementation of these checks in TendermintX, we observed a notable distinction in the
approach to the first group of checks compared to the implementation in Tendermint. In the Tendermint light client
implementation, check validity is primarily ensured through ValidateBasic functions and sanity checks.
However, in the TendermintX implementation, these checks are predominantly conducted using Merkle tree
inclusion proofs for specific data within the header. Leveraging these proofs and the provided data, the Merkle root
is reconstructed and subsequently compared to the expected/given Merkle root.

VerifyNonAdjacent
(Golang reference
implementation)

Skip
(audited function)

Comment

Chain id length Check chain id length. Verify the chain ID against
the header.

OK

Is header missing. Missing header check. - OK, because most of the
checks with merkle
inclusion proofs are

compared against the
header, if it is missing

these would fail.

https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L381-L383
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L370-L375
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/light.go#L135-L137

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Verification logic comparison between Tendermint light
client and TendermintX

5

•

•

Is commit missing. Missing commit check. - This is implicitly checked
with check if the >2/3

validators signed a
commit message. If this

check goes through it
implies a non-empty

commit.

Commit can not be for
a missing block.

Commit cannot be for nil
blocK.

- This is implicitly checked
with check if the >2/3

validators signed a
commit message. If this

check goes through it
implies a block is

present.

Validation of
validators hash

Validate Validators Hash Verify the validators hash
against the computed

hash using merkle tree.

OK

Signature and commit
checks

Signatures presence and
commit check.

Verify the signatures of the
validators that signed the

header.

OK

Check if the chain id is
the expected one.

Header chain id check. Verify the chain ID against
the header.

OK

New header validators
match the given
validators

New header validators
match the given validators.

Computed
validator hash
matches the
expected validator
hash.
Check the
validators hash
came from this
header.

OK

Height of the
untrusted commit is
non negative

Negative height check. The following two checks
from solidity part:

check1 and check2,

in combination with:

merkle tree inclusion
check

OK

https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/light.go#L138-L140
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L904-L906
https://github.com/cometbft/cometbft/blob/cf8af38391a029ef586f2e27f16082b5a663c50b/types/block.go#L416-L418
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L300-L319
https://github.com/cometbft/cometbft/blob/cf8af38391a029ef586f2e27f16082b5a663c50b/types/block.go#L908-L915
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L287-L298
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/light.go#L149-L151
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L370-L375
https://github.com/cometbft/cometbft/blob/cf8af38391a029ef586f2e27f16082b5a663c50b/light/verifier.go#L181-L187
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L300-L319
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L321-L325
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L896-L898
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/contracts/src/TendermintX.sol#L97-L101
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/contracts/src/TendermintX.sol#L119-L120
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L595-L600

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Verification logic comparison between Tendermint light
client and TendermintX

6

Height of the
untrusted header is
non negative

Negative height check. The following two checks
in combination:

check1 and check2,

in combination with:

merkle tree inclusion
check

OK

Round is non negative Negative round check. - Issue:
Missing checks in

commit verification
Header and commit
height must match

Header and commit height
mismatch.

-

Commit and header
hash check

Check commit signs block
and that header is the same

block.

-

The verification check, which entails confirming whether the sum of the voting power of validators that voted for
the untrusted header is greater than 2/3 of the total voting power of the complete validator set, is consistently
executed in both the Golang reference implementation and the audited function. This is achieved by summing the
power of the validators that voted and subsequently comparing it to the specified threshold. An issue in the used
operator has been discovered and it is given in the following table:

VerifyNonAdjacent
(Golang reference
implementation)

Skip
(audited function)

Comment

Ensure that +2/3 of
new validators signed
correctly

2/3 signed correctly. 2/3 signed correctly. Issue: Threshold check
uses greater or equal

instead of only greater

Second group - Light client skipping verification - >1/3 signatures and trusted and
untrusted header relations
In the context of the second group of checks, specifically pertaining to the verification of light client skipping (>1/3
signatures) and the relationship between trusted and untrusted headers, the objective is to confirm the connection
between these headers. This verification process involves ensuring that validators from the untrusted header are
not only present on the trusted header but also constitute a minimum of 1/3 of the total voting power on the
untrusted block.

VerifyNonAdjacent Skip Comment

Ensure that +1/3 of trusted
validators signed untrusted
header

Verify light trusting. Verify the threshold. Issue: Threshold check
uses greater or equal

instead of only greater

https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L385-L389
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/contracts/src/TendermintX.sol#L97-L101
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/contracts/src/TendermintX.sol#L119-L120
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L595-L600
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L899-L901
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/light.go#L154-L156
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/light.go#L157-L159
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/validation.go#L328-L330
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L327-L336
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/light/verifier.go#L57-L66
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L469-L479

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Verification logic comparison between Tendermint light
client and TendermintX

7

Check if headers are non
adjacent

Non adjacent in
height.

Range check. Issue: Skip function does
not check if the trusted

and untrusted header are
non adjacent

Untrusted header height must
be greater then the trusted
height

Untrusted header
height must be greater

than the old header
height.

Range check and

merkle tree inclusion
check

OK.

Time-related checks
As mentioned in the Overview time related checks are missing. These are listed in the following table.

VerifyNonAdjacent Skip Comment

Trusted header expiration Trusting period check. - No time related checks in tendermintX.

Untrusted header time must
be greater then the trusted
time

Untrusted header time
to be after old header

time.

- No time related checks in tendermintX.

Untrusted header time must
not be in the future

Untrusted header time
not in the future.

- No time related checks in tendermintX.

Missing checks (do not introduce security issues at the moment)
The following table outlines checks that are currently identified as missing but do not pose immediate security
issues. Nevertheless, we recommend explicitly incorporating these checks into the code as a defensive
programming measure. The majority of these checks involve hash validations for hashes within the untrusted
header:

VerifyNonAdjacent Skip Comment

BlockId hash validation Validate block id hash
of the untrusted

header.

- We would recommend to include this
check as a defensive programming.

LastCommit hash hash
validation

Validate last commit
hash of the untrusted

header.

- We would recommend to include this
check as a defensive programming.

Data hash validation Validate data hash of
the untrusted header.

- We would recommend to include this
check as a defensive programming.

https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/light/verifier.go#L42-L44
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/contracts/src/TendermintX.sol#L67-L71
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/light/verifier.go#L164-L168
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/contracts/src/TendermintX.sol#L67-L71
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L595-L600
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/light/verifier.go#L46-L49
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/light/verifier.go#L170-L174
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/light/verifier.go#L176-L181
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L1476-L1478
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L395-L397
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L399-L401

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Verification logic comparison between Tendermint light
client and TendermintX

8

Evidence hash validation Validate evidence
hash of the untrusted

header.

- We would recommend to include this
check as a defensive programming.

Next Validators hash
validation

Validate next
validators hash of the

untrusted header.

- We would recommend to include this
check as a defensive programming.

Consensus hash validation Validate consencus
hash of the untrusted

header.

- We would recommend to include this
check as a defensive programming.

Last Result hash validation Validate last result
hash of the untrusted

header.

- We would recommend to include this
check as a defensive programming.

PartSetHeader basic
validation

ValidateBasic of
PartSetHeader.

- We would recommend to include this
check as a defensive programming.

Block protocol check block protocol - This is introduced into the
documentation through https://

github.com/succinctlabs/tendermintx/
pull/54/commits/

8aea1852add5995c466be537d45cb4f898
8799e7 .

Proposer Address Length Check Address Length - We would recommend to include this
check as a defensive programming.

VerifyAdjacent and step comparison
As with the previous two functions, the validations can be categorized into the same two groups. While most of the
checks are identical, this section will spotlight the checks that differ from those mentioned in the preceding section.

Second group - Light client step verification - > the trusted next set of validators is
the untrusted header validator set and trusted and untrusted header relations
The only checks that differ from those for a non-adjacent header are the ones from the second group. This is
reasonable because headers are one after another, allowing for a more precise connection verification through the
checks listed in the following table:

VerifyAdjacent Step Comment

https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L403-L405
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L419-L421
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L422-L424
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L426
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L1479-L1481
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L378-L380
https://github.com/succinctlabs/tendermintx/pull/54/commits/8aea1852add5995c466be537d45cb4f8988799e7
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/block.go#L407-L412

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Verification logic comparison between Tendermint light
client and TendermintX

9

Check the trusted next set of
validators is the untrusted
header validator set

Check the validator
hashes are the same.

Check the trusted next
validator set against the

trusted header and the new
validators hash matches the
next validators' hash of the

trusted header.

OK.

Check if headers are adjacent Adjacent in height. Adjacent in height. OK.

Verify trusted header in the
untrusted header

https://github.com/
cometbft/cometbft/
issues/2252

Verify the previous header
hash in the new header
matches the previous
header.

For this check there
is an issue reported
on the Cometbft.
This is not a security
issue but good to
have. We
recommend to
follow the
resolution of the
issue and
incorporate some
parts if necessary.

https://github.com/cometbft/cometbft/blob/cf8af38391a029ef586f2e27f16082b5a663c50b/light/verifier.go#L114-L121
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L197-L219
https://github.com/cometbft/cometbft/blob/cf8af38391a029ef586f2e27f16082b5a663c50b/light/verifier.go#L99-L101
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/contracts/src/TendermintX.sol#L151-L154
https://github.com/cometbft/cometbft/issues/2252
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L178-L195

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Findings 10

Findings
Title Type Severity Impac

t
Exploitab
ility

Status Issue

Threshold check uses
greater or equal instead
of only greater

IMPLEMEN
TATION

4 CRITICAL 3 HIGH 3 HIGH RESOLVED

Missing checks in
commit verification

IMPLEMEN
TATION

4 CRITICAL 3 HIGH 3 HIGH RESOLVED

Skip function does not
check if the trusted and
untrusted header are
non adjacent

IMPLEMEN
TATION

1 LOW 2
MEDIU
M

1 LOW RESOLVED

Function parameter
naming is confusing

PRACTICE 0
INFORMATI
ONAL

0
NONE

0 NONE RESOLVED

Minor code readability
issue

PRACTICE 0
INFORMATI
ONAL

0
NONE

0 NONE RESOLVED

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Findings 11

•
•
•
•

1.

2.

•

•

Threshold check uses greater or equal instead of only greater

Title Threshold check uses greater or equal instead of only greater

Project Celestia 2024 Q1: Blobstream Home

Type IMPLEMENTATION

Severity 4 CRITICAL

Impact 3 HIGH

Exploitability 3 HIGH

Status RESOLVED

Issue

Involved artifacts
cometbft/types/validation.go
cometbft/light/verifier.go
tendermintx/circuits/builder/verify.rs
tendermintx/circuits/builder/voting.rs

Description
Tendermint Light Client and TendermintX incoming header verification have two important threshold checks:

Check that +2/3 of new validators signed correctly the untrusted header (tendermint light client and
tendermintx)
Check that +1/3 of trusted validators signed untrusted header (tendermint light client and tendermintx)

Tendermint Light Client uses a function named verifyCommitSingle to do these checks, while TendermintX

implementation uses the function named is_voting_power_greater_than_threshold. While

verifyCommitSingle uses ‘greater than' (>) when checking the threshold, the

is_voting_power_greater_than_threshold uses 'greater or equal’ (>=).

Problem Scenarios
Tendermint Consensus works under the assumption that at most 1/3 of the voting power belongs to faulty
(byzantine) validators.

The +1/3 check means that at least one correct validator signed a header. If the check is just for 1/3 all
present signatures could be from faulty validators. Thus the data they signed cannot be trusted.
The +2/3 check is related to finalizing (deciding) a block in Tendermint consensus. A block is finalized of
there are +2/3 precommits for the same block, height, round. If there would be only 2/3 there are scenarios

https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/validation.go
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/light/verifier.go
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/voting.rs
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/types/validation.go#L328-L330
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L327-L336
https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/light/verifier.go#L57-L66
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/verify.rs#L469-L479
https://github.com/cometbft/cometbft/blob/cf8af38391a029ef586f2e27f16082b5a663c50b/types/validation.go#L391-L399
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/voting.rs#L76-L77

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Findings 12

where validators changed their minds during a consensus instance, and later they decided differently based
oni +2/3 precomit messages.

Recommendation
Change the is_voting_power_greater_than_threshold function so that it uses “greater” when
checking the threshold.

Status
Resolved through PR:https://github.com/succinctlabs/tendermintx/pull/54/commits/
380fda08a41a7ed8604669893f13681b03d6ec70.

https://github.com/succinctlabs/tendermintx/pull/54/commits/380fda08a41a7ed8604669893f13681b03d6ec70

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Findings 13

•
•
•

Missing checks in commit verification

Title Missing checks in commit verification

Project Celestia 2024 Q1: Blobstream Home

Type IMPLEMENTATION

Severity 4 CRITICAL

Impact 3 HIGH

Exploitability 3 HIGH

Status RESOLVED

Issue

Involved artifacts
cometbft/types/validation.go
cometbft/types/vote.go
cometbft/types/canonical.go

Description
A central check check in Tendermint lightclient verification is that a signed header can be trusted. For that, one
needs to ensure that the signed header actually is valid, which involves whether the commit is valid, that is, that it
actually corresponds to a finalized block from the chain that is observed. Some checks are missing, in particular,
that the validators all signed the same consensus messages.

Problem Scenarios
The Tendermint consensus algorithm, in principle (in each height) can go through multiple rounds, and different
validators can send (and sign) precommit messages for different blockIDs in different rounds. A block becomes
decided (finalized), once there are more than 2/3 precommits for the same BlockID, height, and round.
In principle, there could be more that 2/3 precommits from different rounds for BlockID A, but in the end BlockID B
ends up being decided. In such a scenario, an attacker may compose a commit using correctly signed precommit
messages for different rounds for Block A. So there needs to be a check in place where this is ruled out, that is, that
>2/3 signed a precommit message for the same height, round, and blockID.

Recommendation
On the Golang implementation side, it looks like this: verifyCommit calls verifyCommitBatch which uses
VoteSignBytes to compute what vote message actually needs to be signed over, which uses CanonicalizeVote that
contains among others the round number. The Rust implementation should have equivalent checks in place.

https://github.com/cometbft/cometbft/blob/9613e7a819ed02401fefd50ada9a7a3b89a1e711/types/validation.go
https://github.com/cometbft/cometbft/blob/9613e7a819ed02401fefd50ada9a7a3b89a1e711/types/vote.go
https://github.com/cometbft/cometbft/blob/9613e7a819ed02401fefd50ada9a7a3b89a1e711/types/canonical.go
https://github.com/cometbft/cometbft/blob/9613e7a819ed02401fefd50ada9a7a3b89a1e711/types/validation.go#L26
https://github.com/cometbft/cometbft/blob/9613e7a819ed02401fefd50ada9a7a3b89a1e711/types/validation.go#L214
https://github.com/cometbft/cometbft/blob/9613e7a819ed02401fefd50ada9a7a3b89a1e711/types/vote.go#L141
https://github.com/cometbft/cometbft/blob/9613e7a819ed02401fefd50ada9a7a3b89a1e711/types/canonical.go#L57

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Findings 14

Status
Verify height in step resolved through PRs:https://github.com/succinctlabs/tendermintx/pull/54/commits/
7bfdeaf810abf04e7c6d36c566e0e6f2b366ea3b and https://github.com/succinctlabs/tendermintx/commit/
779649e1e3e566c5ffdac39bb54d483cd0c6947c.

https://github.com/succinctlabs/tendermintx/pull/54/commits/7bfdeaf810abf04e7c6d36c566e0e6f2b366ea3b
https://github.com/succinctlabs/tendermintx/commit/779649e1e3e566c5ffdac39bb54d483cd0c6947c

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Findings 15

•
•

Skip function does not check if the trusted and untrusted header are non
adjacent

Title Skip function does not check if the trusted and untrusted header are
non adjacent

Project Celestia 2024 Q1: Blobstream Home

Type IMPLEMENTATION

Severity 1 LOW

Impact 2 MEDIUM

Exploitability 1 LOW

Status RESOLVED

Issue

Involved artifacts
cometbft/light/verifier.go
tendermintx/contracts/src/TendermintX.sol

Description
Tendermint light client verification of the non adjacent headers checks if the incoming untrusted header height is
not adjacent to the trusted header. This is done in the VerifyNonAdjacent function here.

TendermintX verification of the non adjacent headers (skip function) does not check this. The check regarding
the range of the incoming untrusted block allows the incoming block to be adjacent to the trusted one.

Problem Scenarios
The skip function can be called for the adjacent blocks when it is more secure to call the specialized counterpart

function named step . If everything is within the Tendermint Security model (at most 1/3 faulty validators) both
approaches are safe. Attacking the skip skip would require +1/3 validators, while attacking step required +2/3,
which is more expensive in terms of staked tokens. As a result, the +2/3 check should be done whenever possible.

Recommendation
Incorporate a check that the trusted header and the untrusted one are non adjacent in the skip function.

https://github.com/cometbft/cometbft/blob/7e63417ff7ed9c58668d9ea43ccd2c6b81b5a8bb/light/verifier.go
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/contracts/src/TendermintX.sol
https://github.com/cometbft/cometbft/blob/cf8af38391a029ef586f2e27f16082b5a663c50b/light/verifier.go#L40-L42
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/contracts/src/TendermintX.sol#L67-L71

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Findings 16

Status
Resolved through PR:https://github.com/succinctlabs/tendermintx/pull/54/commits/
c5d8759adf0dac5db4717a580ff409b098fa6074.

https://github.com/succinctlabs/tendermintx/pull/54/commits/c5d8759adf0dac5db4717a580ff409b098fa6074

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Findings 17

•

Function parameter naming is confusing

Title Function parameter naming is confusing

Project Celestia 2024 Q1: Blobstream Home

Type PRACTICE

Severity 0 INFORMATIONAL

Impact 0 NONE

Exploitability 0 NONE

Status RESOLVED

Issue

Involved artifacts
tendermintx/circuits/skip.rs

Description
Naming of the parameters in verify_skip and the functions that are called within are not intuitive.

For example, verify_skip has the parameter called header which is representing target_header (can

be seen here). It would be easier to read the code if the verify_skip and the inner called functions keep the

naming of these parameters. (For example, it is the same with the following parameters: validators (called

with target_block_validators), chain_id_proof (target_header_chain_id_proof) …).

An good example of a continuation of naming the parameter the same is the target_block parameter.

Problem Scenarios
This bad naming of parameters makes it difficult to understand the code logic.

Recommendation
Modify the functions to have same names for the same parameters.

Status
Resolved through PR: https://github.com/succinctlabs/tendermintx/pull/54/commits/
dd6daae98e6f877bf37f6b8e36cc4cb03a61b470 .

https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/skip.rs
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/skip.rs#L66
https://github.com/succinctlabs/tendermintx/pull/54/commits/dd6daae98e6f877bf37f6b8e36cc4cb03a61b470

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Findings 18

•

Minor code readability issue

Title Minor code readability issue

Project Celestia 2024 Q1: Blobstream Home

Type PRACTICE

Severity 0 INFORMATIONAL

Impact 0 NONE

Exploitability 0 NONE

Status RESOLVED

Issue

Involved artifacts
tendermintx/circuits/builder/shared.rs

Description
In verify_block_height function there is a for loop that is used for extending the encoded_height to 64 bytes:

 for _i in PROTOBUF_VARINT_SIZE_BYTES + 1..64 {
 encoded_height_extended.push(self.constant::<ByteVariable>(0u8));
 }

Being that the encoded_height_extended will always be the same length is not needed. The loop could be
written without it:

 for _i in encoded_height_extended.len()..64 {
 encoded_height_extended.push(self.constant::<ByteVariable>(0u8));
 }

Problem Scenarios
Affects the readability of the code.

Recommendation
In the description.

https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/shared.rs
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/shared.rs#L168
https://github.com/succinctlabs/tendermintx/blob/477c70453f38b44568b4f7a0be81c28ef27b4271/circuits/builder/shared.rs#L184-L186

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Findings 19

Status
Resolved through PR: https://github.com/succinctlabs/tendermintx/commit/
eb881358417ab8abedc5ab94ec0bfcd617aacfb0 .

https://github.com/succinctlabs/tendermintx/commit/eb881358417ab8abedc5ab94ec0bfcd617aacfb0

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Disclaimer 20

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,
confidentiality, disclaimer and limitation of liability, etc.) set forth in the associated Services Agreement. This report
provided in connection with the Services set forth in the Services Agreement shall be used by the Company only to
the extent permitted under the terms and conditions set forth in the Agreement.

This audit report is provided on an “as is” basis, with no guarantee of the completeness, accuracy, timeliness or of
the results obtained by use of the information provided. Informal has relied upon information and data provided by
the client, and is not responsible for any errors or omissions in such information and data or results obtained from
the use of that information or conclusions in this report. Informal makes no warranty of any kind, express or
implied, regarding the accuracy, adequacy, validity, reliability, availability or completeness of this report. This
report should not be considered or utilized as a complete assessment of the overall utility, security or bugfree
status of the code.

This audit report contains confidential information and is only intended for use by the client. Reuse or republication
of the audit report other than as authorized by the client is prohibited.

This report is not, nor should it be considered, an “endorsement”, “approval” or “disapproval” of any particular
project or team. This report is not, nor should it be considered, an indication of the economics or value of any
“product” or “asset” created by any team or project that contracts with Informal to perform a security assessment.
This report does not provide any warranty or guarantee regarding the absolute bug-free nature of the technology
analyzed, nor does it provide any indication of the client’s business, business model or legal compliance. This
report should not be used in any way to make decisions around investment or involvement with any particular
project. This report in no way provides investment advice, nor should it be leveraged as investment advice of any
sort.

Blockchain technology and cryptographic assets in general and by definition present a high level of ongoing risk.
Client is responsible for its own due diligence and continuing security in this regard.

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Appendix: Vulnerability Classification 21

•

•

Appendix: Vulnerability Classification
For classifying vulnerabilities identified in the findings of this report, we employ the simplified version of Common
Vulnerability Scoring System (CVSS) v3.1, which is an industry standard vulnerability metric. For each identified
vulnerability we assess the scores from the Base Metric Group, the Impact score, and the Exploitability score.
The Exploitability score reflects the ease and technical means by which the vulnerability can be exploited. That is, it
represents characteristics of the thing that is vulnerable, which we refer to formally as the vulnerable component.
The Impact score reflects the direct consequence of a successful exploit, and represents the consequence to
the thing that suffers the impact, which we refer to formally as the impacted component. In order to ease score
understanding, we employ CVSS Qualitative Severity Rating Scale, and abstract numerical scores into the textual
representation; we construct the final Severity score based on the combination of the Impact and Exploitability sub-
scores.

As blockchains are a fast evolving field, we evaluate the scores not only for the present state of the system, but also
for the state that deems achievable within 1 year of projected system evolution. E.g., if at present the system
interacts with 1-2 other blockchains, but plans to expand interaction to 10-20 within the next year, we evaluate the
impact, exploitability, and severity scores wrt. the latter state, in order to give the system designers better
understanding of the vulnerabilities that need to be addressed in the near future.

Impact Score
The Impact score captures the effects of a successfully exploited vulnerability on the component that suffers the
worst outcome that is most directly and predictably associated with the attack.

Impact Score Examples

 High Halting of the chain; loss, locking, or unauthorized withdrawal of funds of many users;
arbitrary transaction execution; forging of user messages / circumvention of
authorization logic

 Medium Temporary denial of service / substantial unexpected delays in processing user requests
(e.g. many hours/days); loss, locking, or unauthorized withdrawal of funds of a single
user / few users; failures during transaction execution (e.g. out of gas errors); substantial
increase in node computational requirements (e.g. 10x)

 Low Transient unexpected delays in processing user requests (e.g. minutes/a few hours);
Medium increase in node computational requirements (e.g. 2x); any kind of problem that
affects end users, but can be repaired by manual intervention (e.g. a special transaction)

🔵 None Small increase in node computational requirements (e.g. 20%); code inefficiencies; bad
code practices; lack/incompleteness of tests; lack/incompleteness of documentation

Exploitability Score
The Exploitability score reflects the ease and technical means by which the vulnerability can be exploited; it
represents the characteristics of the vulnerable component. In the below table we list, for each category, examples
of actions by actors that are enough to trigger the exploit. In the examples below:

Actors can be any entity that interacts with the system: other blockchains, system users, validators, relayers,
but also uncontrollable phenomena (e.g. network delays or partitions).
Actions can be

https://www.first.org/cvss/v3.1/specification-document
https://www.first.org/cvss/specification-document#2-3-Impact-Metrics
https://www.first.org/cvss/specification-document#2-1-Exploitability-Metrics
https://www.first.org/cvss/v3.1/specification-document#Qualitative-Severity-Rating-Scale

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Appendix: Vulnerability Classification 22

•

•

•

legitimate, e.g. submission of a transaction that follows protocol rules by a user; delegation/
redelegation/bonding/unbonding; validator downtime; validator voting on a single, but alternative
block; delays in relaying certain messages, or speeding up relaying other messages;
illegitimate, e.g. submission of a specially crafted transaction (not following the protocol, or e.g. with
large/incorrect values); voting on two different alternative blocks; alteration of relayed messages.

We employ also a qualitative measure representing the amount of certain class of power (e.g. possessed
tokens, validator power, relayed messages): small for < 3%; medium for 3-10%; large for 10-33%, all for
>33%. We further quantify this qualitative measure as relative to the largest of the system components. (e.g.
when two blockchains are interacting, one with a large capitalization, and another with a small
capitalization, we employ small wrt. the number of tokens held, if it is small wrt. the large blockchain, even if
it is large wrt. the small blockchain)

Exploitability Score Examples

 High illegitimate actions taken by a small group of actors; possibly coordinated with
legitimate actions taken by a medium group of actors

 Medium illegitimate actions taken by a medium group of actors; possibly coordinated with
legitimate actions taken by a large group of actors

 Low illegitimate actions taken by a large group of actors; possibly coordinated with
legitimate actions taken by all actors

🔵 None illegitimate actions taken in a coordinated fashion by all actors

Severity Score
The severity score combines the above two sub-scores into a single value, and roughly represents the probability of
the system suffering a severe impact with time; thus it also represents the measure of the urgency or order in which
vulnerabilities need to be addressed. We assess the severity according to the combination scheme represented
graphically below.

As can be seen from the image above, only a combination of high impact with high exploitability results in a Critical
severity score; such vulnerabilities need to be addressed ASAP. Accordingly, High severity score receive
vulnerabilities with the combination of high impact and medium exploitability, or medium impact, but high
exploitability.

Severity Score Examples

🔴 Critical Halting of chain via a submission of a specially crafted transaction

© 2023 Informal Systems Celestia 2024 Q1: Blobstream

Appendix: Vulnerability Classification 23

Severity Score Examples

 High Permanent loss of user funds via a combination of submitting a specially crafted
transaction with delaying of certain messages by a large portion of relayers

 Medium Substantial unexpected delays in processing user requests via a combination of
delaying of certain messages by a large group of relayers with coordinated withdrawal
of funds by a large group of users

 Low 2x increase in node computational requirements via coordinated withdrawal of all user
tokens

🔵Informational Code inefficiencies; bad code practices; lack/incompleteness of tests; lack/
incompleteness of documentation; any exploit for which a coordinated illegitimate
action of all actors is necessary

	Audit overview
	The Project
	Conclusions

	Audit dashboard
	Target Summary
	Engagement Summary
	Severity Summary

	Overview
	Verification logic comparison between Tendermint light client and TendermintX
	VerifyNonAdjacent and skip comparison
	First group - Sanity checks on header data structures and validity conditions
	Second group - Light client skipping verification - >1/3 signatures and trusted and untrusted header relations
	Time-related checks
	Missing checks (do not introduce security issues at the moment)

	VerifyAdjacent and step comparison
	Second group - Light client step verification - > the trusted next set of validators is the untrusted header validator set and trusted and untrusted header relations

	Findings
	Threshold check uses greater or equal instead of only greater
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Status

	Missing checks in commit verification
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Status

	Skip function does not check if the trusted and untrusted header are non adjacent
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Status

	Function parameter naming is confusing
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Status

	Minor code readability issue
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Status

	Disclaimer
	Appendix: Vulnerability Classification
	Impact Score
	Exploitability Score
	Severity Score

